Skip to main content

Humanities, Social Science and Language

Digital Products

Course managementreporting, and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations


Inclusive Access
Reduce costs and increase success

LMS Integration
Log in and sync up

Math Placement
Achieve accurate math placement

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Shigley's Mechanical Engineering Design: 2024 Release
Shigley's Mechanical Engineering Design: 2024 Release

Shigley's Mechanical Engineering Design: 2024 Release

ISBN10: 1265472696 | ISBN13: 9781265472696
By Keith Nisbett and Richard Budynas

Format Options:

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Instructor Information

Quick Actions (Only for Validated Instructor Accounts):

Shigley's Mechanical Engineering Design is intended for students beginning the study of mechanical engineering design. Students will find that the text inherently directs them into familiarity with both the basics of design decisions and the standards of industrial components. It combines the straightforward focus on fundamentals that instructors have come to expect, with a modern emphasis on design and new applications. This textbook maintains the well-designed approach that has made this book the standard in machine design for nearly 50 years.

Part 1 - Basics
1) Introduction to Mechanical Engineering Design
2) Materials
3) Load and Stress Analysis
4) Deflection and Stiffness
Part 2 - Failure Prevention
5) Failures Resulting from Static Loading
6) Fatigue Failure Resulting from Variable Loading
Part 3 - Design of Mechanical Elements
7) Shafts and Shaft Components
8) Screws, Fasteners, and the Design of Nonpermanent Joints
9) Welding, Bonding, and the Design of Permanent Joints
10) Mechanical Springs
11) Rolling-Contact Bearings
12) Lubrication and Journal Bearings
13) Gears - General
14) Spur and Helical Gears
15) Bevel and Worm Gears
16) Clutches, Brakes, Couplings and Flywheels
17) Flexible Mechanical Elements
18) Power Transmission Case Study
Part 4 - Special Topics
19) Finite-Element Analysis
20) Geometric Dimensioning and Tolerancing
A - Useful Tables
B - Answers to Selected Problems

About the Author

Keith Nisbett

J. Keith Nisbett is an Associate Professor and Associate Chair of Mechanical Engineering at the Missouri University of Science and Technology. He has over 25 years of experience with using and teaching from this classic textbook. As demonstrated by a steady stream of teaching awards, including the Governor’s Award for Teaching Excellence, he is devoted to finding ways of communicating concepts to the students. He was awarded the BS, MS, and Ph.D. of the University of Texas at Arlington.

Richard Budynas

Richard G. Budynas is Professor Emeritus of the Kate Gleason College of Engineering at Rochester Institute of Technology. He has over 40 years experience in teaching and practicing mechanical engineering design. He is the author of a McGraw-Hill textbook, Advanced Strength and Applied Stress Analysis, Second Edition; and co-author of a McGraw-Hill reference book, Roark's Formulas for Stress and Strain, Seventh Edition. He was awarded the BME of Union College, MSME of the University of Rochester, and the Ph.D. of the University of Massachusetts. He is a licensed Professional Engineer in the state of New York.

Need support?   We're here to help - Get real-world support and resources every step of the way.