Skip to main content

Humanities, Social Science and Language


Digital Products


Connect®
Course managementreporting, and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

ALEKS®
Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

SIMnet
Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations

Services


Inclusive Access
Reduce costs and increase success

LMS Integration
Log in and sync up

Math Placement
Achieve accurate math placement

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students

Support


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Engineering Mechanics: Statics and Dynamics
Engineering Mechanics: Statics and Dynamics

Engineering Mechanics: Statics and Dynamics

ISBN10: 1260710882 | ISBN13: 9781260710885
By Michael Plesha, Gary Gray, Robert J. Witt and Francesco Costanzo

Format Options:

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Instructor Information

Quick Actions (Only for Validated Instructor Accounts):

Engineering Mechanics: Statics and Dynamics is the Problem Solver's Approach for Tomorrow's Engineers. Based upon a great deal of classroom teaching experience, authors Plesha, Gray, & Costanzo provide a rigorous introduction to the fundamental principles of statics and dynamics in a visually appealing framework for students.

This title is available in Connect with SmartBook, featuring Application-Based Activities, the Free Body Diagram Tool, and Process Oriented Problems. Instructor resources for this title include: an Image Library, Lecture PPTs, and an Instructor Solutions Manual.

1 Introduction to Statics
2 Vectors: Force and Position
3 Equilibrium of Particles
4 Moment of a Force and Equivalent Force Systems
5 Equilibrium of Bodies
6 Structural Analysis and Machines
7 Centroids and Distributed Force Systems
8 Internal Forces
9 Friction
10 Moments of Inertia
11 Introduction to Dynamics
12 Particle Kinematics
13 Force and Acceleration Methods for Particles
14 Energy Methods for Particles
15 Momentum Methods for Particles
16 Planar Rigid Body Kinematics
17 Newton-Euler Equations for Planar Rigid Body Motion
18 Energy and Momentum Methods for Rigid Bodies
19 Mechanical Vibrations
20 Three-Dimensional Dynamics of Rigid Bodies
McGraw Hill Connect Product Logo

Main Features

  • LMS Integration
  • Print/Loose-Leaf Book Add-On Availability
  • Presentation Slides & Instructor Resources
  • Question & Test Banks
  • Adaptive Assignments
  • Student Progress Reporting & Analytics
  • Essay Prompts
  • Polling
  • Prebuilt Courses
  • Interactive Exercises
  • eBook Access (ReadAnywhere App)
  • Remote Proctoring (Proctorio)
  • Subject-Specific Tools

About the Author

Michael Plesha

Michael E. Plesha is a Professor of Engineering Mechanics in the Department of Engineering Physics at the University of Wisconsin-Madison. Professor Plesha received his B.S. from the University of Illinois-Chicago in structural engineering and materials, and his M.S. and Ph.D. from Northwestern University in structural engineering and applied mechanics. His primary research areas are computational mechanics, focusing on the development of fi nite element and discrete element methods for solving static and dynamic nonlinear problems, and the development of constitutive models for characterizing behavior of materials. Much of his work focuses on problems featuring contact, friction, and material interfaces. Applications include nanotribology, high temperature rheology of ceramic composite materials, modeling geomaterials including rock and soil, penetration mechanics, and modeling crack growth in structures. He is co-author of the book Concepts and Applications of Finite Element Analysis (with R. D. Cook, D. S. Malkus, and R. J. Witt). He teaches courses in statics, basic and advanced mechanics of materials, mechanical vibrations, and fi nite element methods.

Gary Gray

Gary L. Gray is an Associate Professor of Engineering Science and Mechanics in the Department of Engineering Science and Mechanics at Penn State in University Park, PA. He received a B.S. in Mechanical Engineering (cum laude) from Washington University in St. Louis, MO, an S.M. in Engineering Science from Harvard University, and M.S. and Ph.D. degrees in Engineering Mechanics from the University of Wisconsin-Madison. His primary research interests are in dynamical systems, dynamics of mechanical systems, mechanics education, and multi-scale methods for predicting continuum-level properties of materials from molecular calculations. For his contributions to mechanics education, he has been awarded the Outstanding and Premier Teaching Awards from the Penn State Engineering Society, the Outstanding New Mechanics Educator Award from the American Society for Engineering Education, the Learning Excellence Award from General Electric, and the Collaborative and Curricular Innovations Special Recognition Award from the Provost of Penn State. In addition to dynamics, he also teaches mechanics of materials, mechanical vibrations, numerical methods, advanced dynamics, and engineering mathematics.

Robert J. Witt

Francesco Costanzo

Francesco Costanzo is an Associate Professor of Engineering Science and Mechanics in the Engineering Science and Mechanics Department at Penn State. He received the Laurea in Ingegneria Aeronautica from the Politecnico di Milano, Milan, Italy. After coming to the U.S. as a Fulbright scholar he received his Ph.D. in aerospace engineering from Texas A&M University. His primary research interest is the mathematical and numerical modeling of material behavior. He has focused on the theoretical and numerical characterization of dynamic fracture in materials subject to thermo-mechanical loading via the use of cohesive zone models and various fi nite element methods, including space-time formulations. His research has also focused on the development of multi-scale methods for predicting continuum-level material properties from molecular calculations, including the development of molecular dynamics methods for the determination of the stress-strain response of nonlinear elastic systems. In addition to scientifi c research, he has contributed to various projects for the advancement of mechanics education under the sponsorship of several organizations, including the National Science Foundation. For his contributions, he has received various awards, including the 1998 and the 2003 GE Learning Excellence Awards, and the 1999 ASEE Outstanding New Mechanics Educator Award. In addition to teaching dynamics, he also teaches statics, mechanics of materials, continuum mechanics, and mathematical theory of elasticity.

Accessibility

Creating accessible products is a priority for McGraw Hill. We make accessibility and adhering to WCAG AA guidelines a part of our day-to-day development efforts and product roadmaps.

For more information, visit our accessibility page, or contact us at accessibility@mheducation.com

affordability icon

Affordability

Reduce course material costs for your students while still providing full access to everything they need to be successful. It isn't too good to be true - it's Inclusive Access.

Need support?   We're here to help - Get real-world support and resources every step of the way.