Skip to main content

Humanities, Social Science and Language


Digital Products


Connect®
Course management and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

ALEKS®
Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

SIMnet
Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations

AI Reader
Encourage Discovery, Boost Understanding

Services


Affordable Access
Reduce costs and increase success

Learning Management System Integration
Log in and sync up

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Education for All
Let’s build a future where every student has a chance to succeed

Business Program
Explore business learning solutions & resources

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students

Evergreen
Updated, relevant materials—without the hassle.

Support


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Electronic Filter Simulation & Design

ISBN10: 0071494677 | ISBN13: 9780071494670

Electronic Filter Simulation & Design
ISBN10: 0071494677
ISBN13: 9780071494670
By Giovanni Bianchi

Step 1 . Download Adobe Digital Editions to your PC or Mac desktop/laptop.

Step 2. Register and authorize your Adobe ID (optional). To access your eBook on multiple devices, first create an Adobe ID at account.adobe.com. Then, open Adobe Digital Editions, go to the Help menu, and select "Authorize Computer" to link your Adobe ID.

Step 3. Open Your eBook. Use Adobe Digital Editions to open the file. If the eBook doesn’t open, contact customer service for assistance.

Utilize Powerful New Simulation Methods to Optimize Filter Design! Electronic Filter Simulation and Design shows you how to apply simulation methods and commercially available software to catch errors early in the design stage and streamline your design process. Using 150 detailed illustrations, this hands-on resource examines cutting-edge simulation methods for lumped passive filters…active RC filters…low-pass and band-stop distributed filters…high-pass and band-pass distributed filters…high-frequency filters…discrete time filters…and much more. The book also contains a skills-building CD with files for major case studies covered in the text, together with demo versions of Mathcad and SIMetrix, so that you can work the examples and adapt them to their own projects. Electronic Filter Simulation and Design features: A wealth of synthesis procedures for design Expert guidance on filter verification via simulation The latest design techniques for high-frequency filtersA valuable CD with files for major case studies from the book, plus demo versions of Mathcad and SIMetrix for adapting them Inside this Time-Saving Filter Simulation and Design Guide • Basic Concepts • Lumped Passive Filters • Active RC Filters • Transmission Lines • Low-Pass and Band-Stop Distributed Filters • High-Pass and Band-Pass Distributed Filters • Special Designs of High Frequency Filters • Discrete Time Filters • Waveguide Filters • Appendixes

Chapter 1. Basic Concepts

Chapter 2. Lumped Passive Filters

Chapter 3. Active RC Filters

Chapter 4. Transmission Lines

Chapter 5. Low-Pass and Band-Stop Distributed Filters

Chapter 6. High-Pass and Band-Pass Distributed Filters

Chapter 7. Special Designs of High Frequency Filters

Chapter 8. Discrete Time Filters

Chapter 9. Waveguide Filters

Appendix A: Calculation of the Polynomial Coefficients from a Factorized Expression

Appendix B: Reflection Coefficients Zeroes of a Polynomial All-Pole Low-Pass Filter

Appendix C: Complementarity of the Singly Terminated Low-Pass and High-Pass Filters with the Same Cutoff Frequency, Order, and Load Resistance

Index

Need support?   We're here to help - Get real-world support and resources every step of the way.

Top