My Account Details

ISBN10: 1259861902 | ISBN13: 9781259861901

Step 1 . Download Adobe Digital Editions to your PC or Mac desktop/laptop.
Step 2. Register and authorize your Adobe ID (optional). To access your eBook on multiple devices, first create an Adobe ID at account.adobe.com. Then, open Adobe Digital Editions, go to the Help menu, and select "Authorize Computer" to link your Adobe ID.
Step 3. Open Your eBook. Use Adobe Digital Editions to open the file. If the eBook doesn’t open, contact customer service for assistance.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. An up-to-date, self-contained introduction to the theory and applications of the finite element method This thoroughly revised classic engineering textbook offers a broad-based overview of the finite element method. Written by a world-renowned mechanical engineering researcher and author, the book shows, step-by-step, how to calculate numerical solutions to steady-state as well as time-dependent problems. You also get detailed problems with worked-out solutions and downloadable programs that can be used and modified for real-world situations. Special attention is paid to applications that are important in bioengineering, fluid and thermal sciences, structural mechanics, and a host of applied sciences. Introduction to the Finite Element Method, Fourth Edition, covers: • Mathematical preliminaries and classical variational methods • 1-D finite element models of second-order differential equations • Applications to 1-D heat transfer and fluid and solid mechanics problems • Finite element analysis of beams and circular plates • Plane trusses and frames • Eigenvalue and time-dependent problems in 1-D • Numerical integration and computer implementation in 1-D • Single-variable problems in two dimensions • 2-D interpolation functions, numerical integration, and computer implementation in 2-D • Flows of viscous incompressible fluids • Plane elasticity • 3-D finite element analysis
Need support? We're here to help - Get real-world support and resources every step of the way.