Fundamentals of Thermal-Fluid Sciences https://www.mheducation.com/cover-images/Jpeg_400-high/126071697X.jpeg 6 2022 9781260716979 Fundamentals of Thermal-Fluid Sciences, Sixth Edition, is an abbreviated version of standard thermodynamics, fluid mechanics, and heat transfer texts, covering topics that the majority of engineering students will need in their professional lives. The text is well-suited for curriculums that have a common introductory course or a two-course sequence on thermal-fluid sciences. The book addresses tomorrow's engineers in a simple, yet precise manner, and it leads students toward a clear understanding and firm grasp of the basic principles of thermal-fluid sciences. Special effort has been made to appeal to readers' natural curiosity and to help students explore the various facets of the exciting subject area of thermal-fluid sciences. To enhance student reading, the sixth edition now includes SmartBook® 2.0. SmartBook 2.0—Our adaptive reading experience has been made more personal, accessible, productive, and mobile.
09781260716979
Fundamentals of Thermal-Fluid Sciences

Fundamentals of Thermal-Fluid Sciences, 6th Edition

ISBN10: 126071697X | ISBN13: 9781260716979
By Yunus Cengel, John Cimbala, Afshin Ghajar

Purchase Options

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Program Details

Fundamentals of Thermal-Fluid Sciences, Sixth Edition, is an abbreviated version of standard thermodynamics, fluid mechanics, and heat transfer texts, covering topics that the majority of engineering students will need in their professional lives. The text is well-suited for curriculums that have a common introductory course or a two-course sequence on thermal-fluid sciences. The book addresses tomorrow's engineers in a simple, yet precise manner, and it leads students toward a clear understanding and firm grasp of the basic principles of thermal-fluid sciences. Special effort has been made to appeal to readers' natural curiosity and to help students explore the various facets of the exciting subject area of thermal-fluid sciences. To enhance student reading, the sixth edition now includes SmartBook® 2.0. SmartBook 2.0—Our adaptive reading experience has been made more personal, accessible, productive, and mobile.

1) Introduction and Overview2) Basic Concepts of Thermodynamics
3) Energy, Energy Transfer, and General Energy Analysis
4) Properties of Pure Substances
5) Energy Analysis of Closed Systems
6) Mass and Energy Analysis of Control Volumes
7) The Second Law of Thermodynamics
8) Entropy
9) Power and Refrigeration Cycles
10) Introduction and Properties of Fluids
11) Fluid Statics
12) Bernoulli and Energy Equations
13) Momentum Analysis of Flow Systems
14) Internal Flow
15) External Flow: Drag and Lift
16) Mechanisms of Heat Transfer
17) Steady Heat Conduction
18) Transient Heat Conduction
19) Forced Convection
20) Natural Convection
21) Radiation Heat Transfer
22) Heat Exchangers
Appendix 1 - Property Tables and Charts (SI UNITS)
Appendix 2 - Property Tables and Charts (ENGLISH UNITS)


Connect

By prompting students to engage with key concepts, while continually adapting to their individual needs, Connect activates learning and empowers students to take control resulting in better grades and increased retention rates. Proven online content integrates seamlessly with our adaptive technology, and helps build student confidence outside of the classroom.

SmartBook® 2.0

Available within Connect, SmartBook 2.0 is an adaptive learning solution that provides personalized learning to individual student needs, continually adapting to pinpoint knowledge gaps and focus learning on concepts requiring additional study. SmartBook 2.0 fosters more productive learning, taking the guesswork out of what to study, and helps students better prepare for class. With the ReadAnywhere mobile app, students can now read and complete SmartBook 2.0 assignments both online and off-line. For instructors, SmartBook 2.0 provides more granular control over assignments with content selection now available at the concept level. SmartBook 2.0 also includes advanced reporting features that enable instructors to track student progress with actionable insights that guide teaching strategies and advanced instruction, for a more dynamic class experience.

Your text has great instructor tools, like presentation slides, instructor manuals, test banks and more. Follow the steps below to access your instructor resources or watch the step-by-step video.

  1. To get started, visit connect.mheducation.com to sign in. (If you do not have an account, request one from your McGraw Hill rep. To find your rep, visit Find Your Rep)
  2. Then, under "Find a Title," search by title, author, or subject
  3. Select your desired title, and create a course. (You do not have to create assignments, just a course instance)
  4. Go to your Connect course homepage
  5. In the top navigation, select library to access the title's instructor resources

About the Author

Yunus Cengel

Yunus A. Çengel is Professor Emeritus of Mechanical Engineering at the University of Nevada, Reno. He received his B.S. in mechanical engineering from Istanbul Technical University and his M.S. and Ph.D. in mechanical engineering from North Carolina State University. His areas of interest are renewable energy, energy efficiency, energy policies, heat transfer enhancement, and engineering education. He served as the director of the Industrial Assessment Center (IAC) at the University of Nevada, Reno, from 1996 to 2000. He has led teams of engineering students to numerous manufacturing facilities in Northern Nevada and California to perform industrial assessments, and has prepared energy conservation, waste minimization, and productivity enhancement reports for them. He has also served as an advisor for various government organizations and corporations. 
Dr. Çengel is also the author or coauthor of the widely adopted textbooks Differential Equations for Engineers and Scientists (2013), Fundamentals of Thermal-Fluid Sciences (5th ed., 2017), Fluid Mechanics: Fundamentals and Applications (4th ed., 2018), Thermodynamics: An Engineering Approach (9th ed., 2019), and Heat and Mass Transfer: Fundamentals and Applications (6th ed., 2020), and all published by McGraw Hill LLC Education. Some of his textbooks have been translated into Chinese (Long and Short Forms), Japanese, Korean, Spanish, French, Portuguese, Italian, Turkish, Greek, Tai, and Basq. 
Dr. Çengel is the recipient of several outstanding teacher awards, and he has received the ASEE Meriam/Wiley Distinguished Author Award for excellence in authorship in 1992 and again in 2000. Dr. Çengel is a registered Professional Engineer in the State of Nevada, and is a member of the American Society of Mechanical Engineers (ASME) and the American Society for Engineering Education (ASEE).

John Cimbala

John M. Cimbala is Professor of Mechanical Engineering at The Pennsyl¬vania State University (Penn State), University Park, PA. He received his B.S. in Aerospace Engi-neering from Penn State and his M.S. in Aeronautics from the California Institute of Technology (CalTech). He received his Ph.D. in Aeronautics from CalTech in 1984. His research areas include experimental and computational fluid mechan¬ics and heat transfer, turbulence, turbulence modeling, turbomachinery, indoor air quality, and air pollution control. Professor Cimbala completed sabbatical leaves at NASA Langley Research Center (1993–94), where he advanced his knowledge of computational fluid dynamics (CFD), and at Weir American Hydro (2010–11), where he performed CFD analyses to assist in the design of hydroturbines. 
Dr. Cimbala is the author or coauthor of dozens of journal and conference papers and is the coauthor of four other textbooks: Indoor Air Quality Engi¬neering: Environmental Health and Control of Indoor Pollutants (2003), pub¬lished by Marcel-Dekker, Inc.; Essentials of Fluid Mechanics (2008); Fundamentals of Thermal-Fluid Sciences(5th ed., 2017), and Fluid Mechanics: Fundamentals and Applications (4th ed., 2018), all published by McGraw Hill LLC. He has also contributed to parts of other books, and is the author or coauthor of dozens of journal and conference papers. He has also recently ventured into writing novels. More information can be found at www.mne.psu.edu/cimbala. 
Professor Cimbala is the recipient of several outstanding teaching awards and views his book writing as an extension of his love of teaching. He is a member and Fellow of the American Society of Mechanical Engineers (ASME).  He is also a member of the American Society for Engineering Education (ASEE), and the American Physical Society (APS).

Afshin Ghajar

Afshin J. Ghajar is Regents Professor and John Brammer Professor in the School of Mechanical and Aerospace Engineering at Oklahoma State University, Stillwater, Oklahoma, and an Honorary Professor of Xi’an Jiaotong University, Xi’an, China. He received his B.S., M.S., and Ph.D. degrees, all in mechanical engineering, from Oklahoma State University. His expertise is in experimental heat transfer/fluid mechanics and the development of practical engineering correlations. Dr. Ghajar has made significant contributions to the field of thermal sciences through his experimental, empirical, and numerical works in heat transfer and stratification in sensible heat storage systems, heat transfer to non-Newtonian fluids, heat transfer in the transition region, and non-boiling heat transfer in two-phase flow. His current research is in two-phase flow heat transfer/pressure drop studies in pipes with different orientations, heat transfer/pressure drop in mini/micro tubes, and mixed convective heat transfer/pressure drop in the transition region (plain and enhanced tubes). Dr. Ghajar has been a Summer Research Fellow at Wright Patterson AFB (Dayton, Ohio) and Dow Chemical Company (Freeport, Texas). He and his co-workers have published over 200 reviewed research papers. He has delivered numerous keynote and invited lectures at major technical conferences and institutions.

He has received several outstanding teaching, research, advising, and service awards from the College of Engineering at Oklahoma State University. His latest significant awards are the 75th Anniversary Medal of the ASME Heat Transfer Division “in recognition of his service to the heat transfer community and contributions to the field,” awarded in 2013. He received the ASME ICNMM 2016 Outstanding Leadership Award, which recognizes a person whose service within the ICNMM (International Conference on Nanochannels, Microchannels, and Minichannels) is exemplary. He also received the 2017 Donald Q. Kern Award “in recognition of his outstanding leadership in the field of heat exchangers and two-phase flow, book and archival publications, and service to the academic and industrial professionals.” Dr. Ghajar is a Fellow of the American Society of Mechanical Engineers (ASME), Heat Transfer Series Editor for CRC Press/Taylor & Francis, and Editor-in-Chief of Heat Transfer Engineering, an international journal aimed at practicing engineers and specialists in heat transfer published by Taylor and Francis.

Accessibility

Creating accessible products is a priority for McGraw Hill. We make accessibility and adhering to WCAG AA guidelines a part of our day-to-day development efforts and product roadmaps.

For more information, visit our accessibility page, or contact us at accessibility@mheducation.com

Need support?   We're here to help - Get real-world support and resources every step of the way.