My Account Details

ISBN10: 0071499997 | ISBN13: 9780071499996

Step 1 . Download Adobe Digital Editions to your PC or Mac desktop/laptop.
Step 2. Register and authorize your Adobe ID (optional). To access your eBook on multiple devices, first create an Adobe ID at account.adobe.com. Then, open Adobe Digital Editions, go to the Help menu, and select "Authorize Computer" to link your Adobe ID.
Step 3. Open Your eBook. Use Adobe Digital Editions to open the file. If the eBook doesn’t open, contact customer service for assistance.
Updating their hefty reference approximately every decade since 1958, chemical engineers Poling (U. of Toledo), John M. Prausnitz (U. of California-Berkeley), and John P. O'Connell (U. of Virginia) describe and critically review various estimation procedures for a limited number of properties of gases and liquids. Among those properties are critical and other pure component properties; pressure-volume- temperature relationships and thermodynamic properties of pure components and mixtures; vapor pressures and phase-change enthalpies; standard enthalpies of formation; standard Gibbs energy of formation; heat capacity; surface tension; viscosity; thermal conductivity; diffusion coefficients; and phase equilibria. They compare most of the estimated properties to experimental findings to indicate reliability, and illustrate most methods with examples.
Chapter 1: The Estimation of Physical Properties. Chapter 2: Pure Component Constants. Chapter 3: Thermodynamic Properties of Ideal Gases. Chapter 4: Pressure-Volume-Temperature Relationships of Pure Gases and Liquids. Chapter 5: Pressure-Volume-Temperature Relationships of Mixtures. Chapter 6: Thermodynamic Properties of Pure Components and Mixtures. Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Chapter 3: Thermodynamic Properties of Ideal Gases. Chapter 4: Pressure-Volume-Temperature Relationships of Pure Gases and Liquids. Chapter 5: Pressure-Volume-Temperature Relationships of Mixtures. Chapter 6: Thermodynamic Properties of Pure Components and Mixtures. Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Chapter 5: Pressure-Volume-Temperature Relationships of Mixtures. Chapter 6: Thermodynamic Properties of Pure Components and Mixtures. Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Chapter 7: Vapor Pressures and Enthalpies of Vaporization of Pure Fluids. Chapter 8: Fluid Phase Equilibria in Multicomponent Systems. Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Chapter 9: Viscosity. Chapter 10: Thermal Conductivity. Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Chapter 11: Diffusion Coefficients. Chapter 12: Surface Tension.
Need support? We're here to help - Get real-world support and resources every step of the way.