Skip to main content

Humanities, Social Science and Language


Digital Products


Connect®
Course management and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

ALEKS®
Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

SIMnet
Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations

AI Reader
Encourage Discovery, Boost Understanding

Services


Affordable Access
Reduce costs and increase success

Learning Management System Integration
Log in and sync up

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Education for All
Let’s build a future where every student has a chance to succeed

Business Program
Explore business learning solutions & resources

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students

Evergreen
Updated, relevant materials—without the hassle.

Support


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Internal Combustion Engine Fundamentals 2E

ISBN10: 1260116107 | ISBN13: 9781260116106

Internal Combustion Engine Fundamentals 2E
ISBN10: 1260116107
ISBN13: 9781260116106
By John Heywood

Step 1 . Download Adobe Digital Editions to your PC or Mac desktop/laptop.

Step 2. Register and authorize your Adobe ID (optional). To access your eBook on multiple devices, first create an Adobe ID at account.adobe.com. Then, open Adobe Digital Editions, go to the Help menu, and select "Authorize Computer" to link your Adobe ID.

Step 3. Open Your eBook. Use Adobe Digital Editions to open the file. If the eBook doesn’t open, contact customer service for assistance.

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The long-awaited revision of the most respected resource on Internal Combustion Engines --covering the basics through advanced operation of spark-ignition and diesel engines. Written by one of the most recognized and highly regarded names in internal combustion engines this trusted educational resource and professional reference covers the key physical and chemical processes that govern internal combustion engine operation and design. Internal Combustion Engine Fundamentals, Second Edition, has been thoroughly revised to cover recent advances, including performance enhancement, efficiency improvements, and emission reduction technologies. Highly illustrated and cross referenced, the book includes discussions of these engines’ environmental impacts and requirements. You will get complete explanations of spark-ignition and compression-ignition (diesel) engine operating characteristics as well as of engine flow and combustion phenomena and fuel requirements. Coverage includes: • Engine types and their operation • Engine design and operating parameters • Thermochemistry of fuel-air mixtures • Properties of working fluids • Ideal models of engine cycles • Gas exchange processes • Mixture preparation in spark-ignition engines • Charge motion within the cylinder • Combustion in spark-ignition engines • Combustion in compression-ignition engines • Pollutant formation and control • Engine heat transfer • Engine friction and lubrication • Modeling real engine flow and combustion processes • Engine operating characteristics

Commonly Used Symbols, Subscripts, and Abbreviations
CHAPTER 1 Engine Types and Their Operation
1.1 Introduction and Historical Perspective
1.2 Engine Classifications
1.3 Engine Operating Cycles
1.4 Engine Components
1.5 Multicylinder Engines
1.6 Spark-Ignition Engine Operation
1.7 Different Types of Four-Stroke SI Engines
1.7.1 Spark-Ignition Engines with Port Fuel Injection
1.7.2 SI Engines for Hybrid Electric Vehicles
1.7.3 Boosted SI Engines
1.7.4 Direct-Injection SI Engines
1.7.5 Prechamber SI Engines
1.7.6 Rotary Engines
1.8 Compression-Ignition Engine Operation
1.9 Different Types of Diesel Engines
1.10 Two-Stroke Cycle Engine Operation
1.11 Fuels
1.11.1 Gasoline and Diesel
1.11.2 Alternative Fuels
Problems
References
CHAPTER 2 Engine Design and Operating Parameters
2.1 Important Engine Characteristics
2.2 Geometrical Relationships for Reciprocating Engines
2.3 Forces in Reciprocating Mechanism
2.4 Brake Torque and Power
2.5 Indicated Work per Cycle
2.6 Mechanical Efficiency
2.7 Mean Effective Pressure
2.8 Specific Fuel Consumption and Efficiency
2.9 Air/Fuel and Fuel/Air Ratios
2.10 Volumetric Efficiency
2.11 Specific Power, Specific Weight, and Specific Volume
2.12 Correction Factors for Power and Volumetric Efficiency
2.13 Specific Emissions and Emissions Index
2.14 Relationships between Performance Parameters
2.15 Engine Design and Performance Data
2.16 Vehicle Power Requirements
Problems
References
CHAPTER 3 Thermochemistry of Fuel-Air Mixtures
3.1 Characterization of Flames
3.2 Ideal Gas Model
3.3 Composition of Air and Fuels
3.4 Combustion Stoichiometry
3.5 The First Law of Thermodynamics and Combustion
3.5.1 Energy and Enthalpy Balances
3.5.2 Enthalpies of Formation
3.5.3 Heating Values
3.5.4 Adiabatic Combustion Processes
3.5.5 Combustion Efficiency of an Internal Combustion Engine
3.6 The Second Law of Thermodynamics Applied to Combustion
3.6.1 Entropy
3.6.2 Maximum Work from an Internal Combustion Engine and Efficiency
3.7 Chemically Reacting Gas Mixtures
3.7.1 Chemical Equilibrium
3.7.2 Chemical Reaction Rates
Problems
References
CHAPTER 4 Properties of Working Fluids
4.1 Introduction
4.2 Unburned Mixture Composition
4.3 Gas Property Relationships
4.4 A Simple Analytic Ideal Gas Model
4.5 Thermodynamic Property Charts
4.5.1 Unburned Mixture Charts
4.5.2 Burned Mixture Charts
4.5.3 Relation between Unburned and Burned Mixture Charts
4.6 Tables of Properties and Composition
4.7 Computer Routines for Property and Composition Calculations
4.7.1 Unburned Mixtures
4.7.2 Burned Mixtures
4.8 Transport Properties
4.9 Exhaust Gas Composition
4.9.1 Species Concentration Data
4.9.2 Equivalence Ratio Determination from Exhaust Gas Constituents
4.9.3 Effects of Fuel/Air Ratio Nonuniformity
4.9.4 Combustion Inefficiency
Problems
References
CHAPTER 5 Ideal Models of Engine Cycles
5.1 Introduction
5.2 Ideal Models of Engine Processes
5.3 Thermodynamic Relations for Engine Processes
5.4 Cycle Analysis with Ideal Gas Working Fluid with cv and cp Constant
5.4.1 Constant-Volume Cycle
5.4.2 Limited- and Constant-Pressure Cycles
5.4.3 Cycle Comparison
5.5 Fuel-Air Cycle Analysis
5.5.1 SI Engine Cycle Simulation
5.5.2 CI Engine Cycle Simulation
5.5.3 Results of Cycle Calculations
5.6 Overexpanded Engine Cycles
5.7 Availability Analysis of Engine Processes
5.7.1 Availability Relationships
5.7.2 Entropy Changes in Ideal Cycles
5.7.3 Availability Analysis o

Need support?   We're here to help - Get real-world support and resources every step of the way.

Top