My Account Details

ISBN10: 0071482806 | ISBN13: 9780071482806

Step 1 . Download Adobe Digital Editions to your PC or Mac desktop/laptop.
Step 2. Register and authorize your Adobe ID (optional). To access your eBook on multiple devices, first create an Adobe ID at account.adobe.com. Then, open Adobe Digital Editions, go to the Help menu, and select "Authorize Computer" to link your Adobe ID.
Step 3. Open Your eBook. Use Adobe Digital Editions to open the file. If the eBook doesn’t open, contact customer service for assistance.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Get a Solid Account of Physical Layer Communications Theory, Illustrated with Numerous Interactive MATLAB Mini-Projects You can rely on Fundamentals of Communications Systems for a solid introduction to physical layer communications theory, filled with modern implementations and MATLAB examples. This state-of-the-art guide covers essential theory and current engineering practice, carefully explaining the real-world tradeoffs necessary among performance, spectral efficiency, and complexity. Written by an award-winning communications expert, the book first takes readers through analog communications basics, amplitude modulations, analog angle modulation, and random processes. This essential resource then explains noise in bandpass communications systems…bandpass Gaussian random processes…digital communications basics…complexity of optimum demodulation…spectrally efficient data transmission...and more. Fundamentals of Communications Systems features: A modern approach to communications theory, reflecting current engineering applications Numerous MATLAB problems integrated throughout, with software available for download Detailed coverage of tradeoffs among performance, spectral efficiency, and complexity in engineering design Text written in four parts for easy modular presentation Inside This On-Target Communications Engineering Tool • Mathematical Foundations • Analog Communications Basics • Amplitude Modulations • Analog Angle Modulation • More Topics in Analog Communications • Random Processes • Noise in Bandpass Communications Systems • Bandpass Gaussian Random Processes • Digital Communications Basics • Optimal Single Bit Demodulation Structures • Transmitting More than One Bit • Complexity of Optimum Demodulation • Spectrally Efficient Data Transmission
PrefaceAcknowledgmentsChapter 1: IntroductionPart 1: Mathematical FoundationsChapter 2: Signals and Systems ReviewChapter 3: Review of Probability and Random VariablesChapter 4: Complex Baseband Representation of Bandpass SignalsPart 2: Analog CommunicationChapter 5: Analog Communications BasicChapter 6: Amplitude ModulationChapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 1: IntroductionPart 1: Mathematical FoundationsChapter 2: Signals and Systems ReviewChapter 3: Review of Probability and Random VariablesChapter 4: Complex Baseband Representation of Bandpass SignalsPart 2: Analog CommunicationChapter 5: Analog Communications BasicChapter 6: Amplitude ModulationChapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 2: Signals and Systems ReviewChapter 3: Review of Probability and Random VariablesChapter 4: Complex Baseband Representation of Bandpass SignalsPart 2: Analog CommunicationChapter 5: Analog Communications BasicChapter 6: Amplitude ModulationChapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 4: Complex Baseband Representation of Bandpass SignalsPart 2: Analog CommunicationChapter 5: Analog Communications BasicChapter 6: Amplitude ModulationChapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 5: Analog Communications BasicChapter 6: Amplitude ModulationChapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 7: Analog Angle ModulationChapter 8: More Topics in Analog CommunicationsPart 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Part 3: Noise in Communications SystemsChapter 9: Random ProcessesChapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 10: Noise in Bandpass Communication SystemsChapter 11: Fidelity in Analog DemodulationPart 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Part 4: Fundamentals of Digital CommunicationChapter 12: Digital Communication BasicsChapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 13: Optimal Single Bit Demodulation StructuresChapter 14: Transmitting More Than One BitChapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 15: Managing the Complexity of Optimum DemodulationChapter 16: Spectrality Efficient Data TransmissionChapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Chapter 17: Orthogonal Modulations with MemoryAppendix A: Useful FormulasAppendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Appendix B: NotationAppendix C: AcronymsAppendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Appendix D: Fourier Transforms: f versus wAppendix E: Further Reading and BibliographyIndex
Index
Need support? We're here to help - Get real-world support and resources every step of the way.