Skip to main content

Humanities, Social Science and Language


Digital Products


Connect®
Course managementreporting, and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

ALEKS®
Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

SIMnet
Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations

Services


Inclusive Access
Reduce costs and increase success

LMS Integration
Log in and sync up

Math Placement
Achieve accurate math placement

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students

Support


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Vector Mechanics for Engineers: Dynamics
Vector Mechanics for Engineers: Dynamics

Vector Mechanics for Engineers: Dynamics, 12th Edition

ISBN10: 1259977307 | ISBN13: 9781259977305
By Ferdinand Beer, E. Johnston, Phillip Cornwell and Brian Self

Format Options:

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Instructor Information

Quick Actions (Only for Validated Instructor Accounts):

A primary objective in a first course in mechanics is to help develop a student's ability first to analyze problems in a simple and logical manner, and then to apply basic principles to their solutions. A strong conceptual understanding of these basic mechanics principles is essential for successfully solving mechanics problems. This edition of Vector Mechanics for Engineers will help instructors achieve these goals. Continuing in the spirit of its successful previous editions, this edition provides conceptually accurate and thorough coverage together with a significant refreshment of the exercise sets and online delivery of homework problems to your students.

The 12th edition has new case studies and enhancements in the text and in Connect. The hallmark of the Beer-Johnston series has been the problem sets.This edition is no different. Over 650 of the homework problems in the text are new or revised. One of the characteristics of the approach used in this book is that mechanics of particles is clearly separated from the mechanics of rigid bodies. This approach makes it possible to consider simple practical applications at an early stage and to postpone the introduction of the more difficult concepts. Additionally, Connect has over 100 Free-Body Diagram Tool Problems and Process-Oriented Problems.

McGraw-Hill's Connect, is also available. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

11) Kinematics of Particles

12) Kinetics of Particles: Newton's Second Law

13) Kinetics of Particles: Energy and Momentum Methods

14) Systems of Particles

15) Kinematics of Rigid Bodies

16) Plane Motion of Rigid Bodies: Forces and Accelerations

17) Plane Motion of Rigid Bodies: Energy and Momentum Methods

18) Kinetics of Rigid Bodies in Three Dimensions

19) Mechanical Vibrations

Appendix Fundamentals of Engineering Examination

About the Author

Ferdinand Beer

Born in France and educated in France and Switzerland, Ferdinand Beer held an M.S. degree from the Sorbonne and an Sc.D. degree in theoretical mechanics from the University of Geneva. He came to the United States after serving in the French army during the early part of World War II and taught for four years at Williams College in the Williams-MIT joint arts and engineering program. Following his service at Williams College, Beer joined the faculty of Lehigh University, where he taught for thirty-seven years. He held several positions, including the University Distinguished Professors Chair and Chairman of the Mechanical Engineering and Mechanics Department. In 1995, Beer was awarded an honorary Doctor of Engineering degree by Lehigh University.

E. Johnston

Born in Philadelphia, Russ holds a B.S. degree in civil engineering from the University of Delaware and an Sc.D. degree in the field of structural engineering from The Massachusetts Institute of Technology (MIT). He taught at Lehigh University and Worchester Polytechnic Institute (WPI) before joining the faculty of the University of Connecticut where he held the position of Chairman of the Civil Engineering Department and taught for twenty-six years. In 1991 Russ received the Outstanding Civil Engineer Award from the Connecticut Section of the American Society of Civil Engineers.

Phillip Cornwell

Phillip J. Cornwell holds a B.S. degree in mechanical engineering from Texas Tech University and M.A. and Ph.D. degrees in mechanical and aerospace engineering from Princeton University. He is currently a professor of mechanical engineering at Rose-Hulman Institute of Technology, where he has taught since 1989. His present interests include structural dynamics, structural health monitoring, and undergraduate engineering education. Cornwell spends his summers working at Los Alamos National Laboratory, where he is a mentor in the Los Alamos Dynamics Summer School and does research in the area of structural health monitoring. He received an SAE Ralph R. Teetor Educational Award in 1992, the Dean's Outstanding Scholar Award at Rose-Hulman in 2000, and the Board of Trustees Outstanding Scholar Award at Rose-Hulman in 2001.

Brian Self

Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at California Polytechnic State University, San Luis Obispo, since 2006. He has been active in the American Society of Engineering Education, serving on its Board from 2008-2010. With a team of five, Brian developed the Dynamics Concept Inventory to help assess student conceptual understanding. His professional interests include educational research, aviation physiology, and biomechanics.

Need support?   We're here to help - Get real-world support and resources every step of the way.