Skip to main content

Humanities, Social Science and Language

Digital Products

Course managementreporting, and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations


Inclusive Access
Reduce costs and increase success

LMS Integration
Log in and sync up

Math Placement
Achieve accurate math placement

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

The Physical Universe
The Physical Universe

The Physical Universe, 17th Edition

ISBN10: 1260150526 | ISBN13: 9781260150520
By Konrad Krauskopf and Arthur Beiser; Emeritus

Format Options:

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Instructor Information

Quick Actions (Only for Validated Instructor Accounts):

The Physical Universe, 17e by Konrad Krauskopf and Arthur Beiser is an outstanding text with a long history. For the 17th edition, real student data points and input, derived from thousands of our LearnSmart and SmartBook users, were used to guide the revision. Heat Maps provided clear visual snapshots of usage of portions of the text and the relative difficulty students experienced in mastering the content. This data was used to direct many of the revisions for this new edition. Of course, many updates have also been made according to changing scientific data, based on current events and so forth. Aimed at presenting the essentials of physics, chemistry, earth science, and astronomy in a clear, easy-to-understand way, The Physical Universe shows students how science works, how scientists approach problems, and why science constantly evolves in its search for understanding.

1 The Scientific Method

How Scientists Study Nature

1.1 The Scientific Method
1.2 Why Science Is Successful

The Solar System

1.3 A Survey of the Sky
1.4 The Ptolemaic System
1.5 The Copernican System
1.6 Kepler's Laws
1.7 Why Copernicus Was Right

Universal Gravitation

1.8 What Is Gravity?
1.9 Why the Earth Is Round
1.10 The Tides
1.11 The Discovery of Neptune

How Many of What

1.12 The SI System

2 Motion

Describing Motion

2.1 Speed
2.2 Vectors
2.3 Acceleration
2.4 Distance, Time, and Acceleration

Acceleration due to Gravity

2.5 Free Fall
2.6 Air Resistance

Force and Motion

2.7 First law of Motion
2.8 Mass
2.9 Second Law of Motion
2.10 Mass and Weight
2.11 Third Law of Motion


2.12 Circular Motion
2.13 Newton's Law of Gravity
2.14 Artificial Satellites

3 Energy


3.1 The Meaning of Work
3.2 Power


3.3 Kinetic Energy
3.4 Potential Energy
3.5 Conservation of Energy
3.6 Mechanical Advantage
3.7 The Nature of Heat


3.8 Linear Momentum
3.9 Rockets
3.10 Angular Momentum


3.11 Special Relativity
3.12 Rest Energy
3.13 General Relativity

4 Energy and the Future

The Energy Problem

4.1 Population and Prosperity
4.2 Energy Supply and Consumption
4.3 Climate Change
4.4 Carbon Dioxide and the Greenhouse Effect

Fossil Fuels

4.5 Liquid Fuels
4.6 Natural Gas
4.7 Coal

Alternative Sources

4.8 A Nuclear World?
4.9 Renewable Energy I
4.10 Renewable Energy II
4.11 Energy Storage
4.12 Biofuels

Strategies for the Future

4.13 Conservation and Geoengineering
4.14 What Governments Must Do

5 Matter and Heat

Temperature and Heat

5.1 Temperature
5.2 Heat
5.3 Metabolic Energy


5.4 Density
5.5 Pressure
5.6 Buoyancy
5.7 The Gas Laws

Kinetic Theory of Matter

5.8 Kinetic Theory of Gases
5.9 Molecular Motion and Temperature
5.10 Heat Transfer

Changes of State

5.11 Liquids and Solids
5.12 Evaporation and Boiling
5.13 Melting

Energy Transformations

5.14 Heat Engines
5.15 Thermodynamics
5.16 Fate of the Universe
5.17 Entropy

6 Electricity and Magnetism

Electric Charge

6.1 Positive and Negative Charge
6.2 What Is Charge?
6.3 Coulomb's Law
6.4 Force on an Uncharged Object

Electricity and Matter

6.5 Matter in Bulk
6.6 Conductors and Insulators
6.7 Superconductivity

Electric Current

6.8 The Ampere
6.9 Potential Difference
6.10 Ohm's Law
6.11 Electric Power


6.12 Magnets
6.13 Magnetic Field
6.14 Oersted's Experiment
6.15 Electromagnets

Using Magnetism

6.16 Magnetic Force on a Current
6.17 Electric Motors
6.18 Electromagnetic Induction
6.19 Transformers

7 Waves

Wave Motion

7.1 Water Waves
7.2 Transverse and Longitudinal Waves
7.3 Describing Waves
7.4 Standing Waves

Sound Waves

7.5 Sound
7.6 Doppler Effect
7.7 Musical Sounds

Electromagnetic Waves

7.8 Electromagnetic Waves
7.9 Types of EM Waves
7.10 Light "Rays"

Wave Behavior

7.11 Reflection
7.12 Refraction
7.13 Lenses
7.14 The Eye
7.15 Color
7.16 Interference
7.17 Diffraction

8 The Nucleus

Atom and Nucleus

8.1 Rutherford Model of the Atom
8.2 Nuclear Structure


8.3 Radioactive Decay
8.4 Half-Life
8.5 Radiation Hazards

Nuclear Energy

8.6 Units of Mass and Energy
8.7 Binding Energy
8.8 Binding Energy per Nucleon

Fission and Fusion

8.9 Nuclear Fission
8.10 How a Reactor Works
8.11 Reactor Accidents
8.12 Plutonium
8.13 Nuclear Fusion

Elementary Particles

8.14 Antiparticles
8.15 Fundamental Interactions
8.16 Leptons and Hadrons

9 The Atom

Quantum Theory of Light

9.1 Photoelectric Effect
9.2 Photons
9.3 What Is Light?
9.4 X-Rays

Matter Waves

9.5 De Broglie Waves
9.6 Waves of What?
9.7 Uncertainty Principle

The Hydrogen Atom

9.8 Atomic Spectra
9.9 The Bohr Model
9.10 Electron Waves and Orbitals
9.11 The Laser

Quantum Theory of the Atom

9.12 Quantum Mechanics
9.13 Quantum Numbers
9.14 Exclusion Principle

10 The Periodic Law

Elements and Compounds

10.1 Chemical Change
10.2 Three Classes of Matter
10.3 The Atomic Theory

The Periodic Law

10.4 Metals and Nonmetals
10.5 Chemical Activity
10.6 Families of Elements
10.7 The Periodic Table
10.8 Groups and Periods

Atomic Structure

10.9 Shells and Subshells
10.10 Explaining the Periodic Table

Chemical Bonds

10.11 Types of Bond
10.12 Covalent Bonding
10.13 Ionic Bonding
10.14 Ionic Compounds
10.15 Naming Compounds
10.16 Chemical Equations
10.17 Types of Chemical Reactions

11 Crystals, Ions, and Solutions


11.1 Ionic and Covalent Crystals
11.2 The Metallic Bond
11.3 Molecular Crystals


11.4 Solubility
11.5 Polar and Nonpolar Liquids
11.6 Ions in Solution
11.7 Evidence for Dissociation
11.8 Water
11.9 Water Pollution

Acids and Bases

11.10 Acids
11.11 Strong and Weak Acids
11.12 Bases
11.13 The pH Scale
11.14 Salts

12 Chemical Reactions

Quantitative Chemistry

12.1 Phlogiston
12.2 Oxygen
12.3 The Mole
12.4 Formula Units

Chemical Energy

12.5 Exothermic and Endothermic Reactions
12.6 Chemical Energy and Stability
12.7 Activation energy

Reaction Rates

12.8 Temperature and Reaction Rates
12.9 Other Factors
12.10 Chemical Equilibrium
12.11 Altering an Equilibrium

Oxidation and Reduction

12.12 Oxidation-Reduction Reactions
12.13 Electrochemical cells

13 Organic Chemistry

Carbon Compounds

13.1 Carbon Bonds
13.2 Alkanes
13.3 Petroleum Products

Structures of Organic Molecules

13.4 Structural Formulas
13.5 Isomers
13.6 Unsaturated Hydrocarbons
13.7 Benzene

Organic Compounds

13.8 Hydrocarbon Groups
13.9 Functional Groups
13.10 Polymers

Chemistry of Life

13.11 Carbohydrates
13.12 Photosynthesis
13.13 Lipids
13.14 Proteins
13.15 Soil Nitrogen
13.16 Nucleic Acids
13.17 Origin of Life

14 Atmosphere and Hydrosphere

The Atmosphere

14.1 Regions of the Atmosphere
14.2 Atmospheric Moisture
14.3 Clouds


14.4 Atmospheric Energy
14.5 The Seasons
14.6 Winds
14.7 General Circulation of the Atmosphere
14.8 Middle-Latitude Weather Systems


14.9 Tropical Climates
14.10 Middle- and High-Latitude Climates
14.11 Climatic Change

The Hydrosphere

14.12 Ocean Basins
14.13 Ocean Currents

15 The Rock Cycle


15.1 Composition of the Crust
15.2 Minerals
15.3 Igneous Rocks
15.4 Sedimentary Rocks
15.5 Metamorphic Rocks

Within the Earth

15.6 Earthquakes
15.7 Structure of the Earth
15.8 The Earth's Interior
15.9 Geomagnetism


15.10 Weathering
15.11 Stream Erosion
15.12 Glaciers
15.13 Groundwater
15.14 Sedimentation


15.15 Volcanoes
15.16 Intrusive Rocks
15.17 The Rock Cycle

16 The Evolving Earth

Tectonic Movement

16.1 Types of Movement
16.2 Mountain Building
16.3 Continental Drift

Plate Tectonics

16.4 Lithosphere and Asthenosphere
16.5 The Ocean Floors
16.6 Ocean-Floor Spreading
16.7 Plate Tectonics

Methods of Historical Geology

16.8 Principles of Uniform Change
16.9 Rock Formations
16.10 Radiometric Dating
16.11 Fossils
16.12 Geologic Time

Earth History

16.13 Precambrian Time
16.14 The Paleozoic Era
16.15 Coal and Petroleum
16.16 The Mesozoic Era
16.17 The Cenozoic Era
16.18 Human History

17 The Solar System

The Family of the Sun

17.1 The Solar System
17.2 Comets
17.3 Meteors

The Inner Planets

17.4 Mercury
17.5 Venus
17.6 Mars
17.7 Is There Life On Mars?
17.8 Asteroids

The Outer Planets

17.9 Jupiter
17.10 Saturn
17.11 Uranus, Neptune, Pluto, and More

The Moon

17.12 Phases of the Moon
17.13 Eclipses
17.14 Lunar Surface and Interior
17.15 Evolution of the Lunar Landscape
17.16 Origin of the Moon

18 The Stars

Tools of Astronomy

18.1 The Telescope
18.2 The Spectrometer
18.3 Spectrum Analysis

The Sun

18.4 Properties of the Sun
18.5 The Aurora
18.6 Sunspots
18.7 Solar Energy

The Stars

18.8 Stellar Distances
18.9 Variable Stars
18.10 Stellar Motions
18.11 Stellar Properties

Life Histories of the Stars

18.12 H-R Diagrams
18.13 Stellar Evolution
18.14 Supernovas
18.15 Pulsars
18.16 Black Holes

19 The Universe


19.1 The Milky Way
19.2 Stellar Populations
19.3 Radio Astronomy
19.4 Galaxies
19.5 Cosmic Rays

The Expanding Universe

19.6 Red Shifts
19.7 Quasars

Evolution of the Universe

19.8 Dating the Universe
19.9 After the Big Bang
19.10 Origin of the Solar System

Extraterrestrial Life

19.11 Exoplanets
19.12 Interstellar Travel
19.13 Interstellar Communication

Math Refresher

The Elements

Answers to Multiple-Choice Questions and Odd-Numbered Exercises

McGraw Hill Connect Product Logo

Main Features

  • LMS Integration
  • Print/Loose-Leaf Book Add-On Availability
  • Presentation Slides & Instructor Resources
  • Question & Test Banks
  • Adaptive Assignments
  • Student Progress Reporting & Analytics
  • Essay Prompts
  • Polling
  • Prebuilt Courses
  • Interactive Exercises
  • eBook Access (ReadAnywhere App)
  • Remote Proctoring (Proctorio)
  • Subject-Specific Tools

About the Author

Konrad Krauskopf

Konrad B. Krauskopf was born and raised in Madison, Wisconsin and earned a B.S. in chemistry from University of Wisconsin in 1931. He then earned a Ph.D. in chemistry at the University of California in Berkeley. When the Great Depression made jobs in chemistry scarce, Professor Krauskopf decided to study geology, which had long fascinated him. Through additional graduate work at Stanford University, he earned a second Ph.D. and eventually a position on the Stanford faculty. He remained at Stanford until his retirement in 1976. During his tenure, Professor Krauskopf also worked at various times with the U.S. Geological Survey, served with the U.S. army in occupied Japan, and traveled to Norway, France, and Germany on sabbatical leaves. His research interests included field work on granites and metamorphic rocks and laboratory study on applications of chemistry to geologic problems, especially the formation of ore deposits. In recent years, Professor Krauskopf had spent time working with various government agencies on the problem of radioactive waste disposal. Professor Krauskopf passed away on May 8, 2003.

Arthur Beiser; Emeritus

Arthur Beiser, a native of New York City, received B.S., M.S., and Ph.D. degrees in physics from New York University, where he later served as Associate Professor of Physics. He then was a Senior Research Scientist at the Lamont Geo- logical Observatory of Columbia University. His research interests were chiefly in cosmic rays and in magnetohydrodynamics as applied to geophysics and astrophys- ics. In addition to theoretical work, he participated in a cosmic-ray expedition to an Alaskan peak and directed a search for magnetohydrodynamic waves from space in various Pacific locations. A Fellow of The Explorers Club, Dr. Beiser was the first chairman of its Committee on Space Exploration. He is the author or coauthor of 36 books, mostly college texts on physics and mathematics, 14 of which have been translated into a total of 27 languages. Two of his books are on sailing, The Proper Yacht and The Sailor’s World. Figure 13-21 is a photograph of Dr. Beiser at the helm of his 58-ft sloop; he and his wife Germaine have sailed over 150,000 miles, includ- ing two Atlantic crossings and a rounding of Cape Horn. Germaine Beiser, who has degrees in physics from the Massachusetts Institute of Technology and New York University, is the author or coauthor of seven books on various aspects of physics and has contributed to The Physical Universe. For a number of years she was the editor of a cruising guide to the Adriatic Sea.


Creating accessible products is a priority for McGraw Hill. We make accessibility and adhering to WCAG AA guidelines a part of our day-to-day development efforts and product roadmaps.

For more information, visit our accessibility page, or contact us at

affordability icon


Reduce course material costs for your students while still providing full access to everything they need to be successful. It isn't too good to be true - it's Inclusive Access.

Need support?   We're here to help - Get real-world support and resources every step of the way.