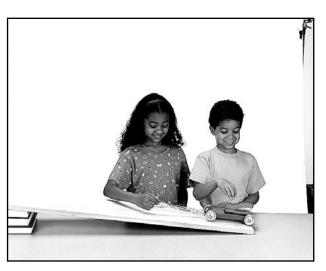

Chapter Science Investigation Name

Working on a Slant


UNIT C • Chapter 3: Simple Machines and How They Work Copyright © SRA/McGraw-Hill.

- 5. Place the small, heavy object to be moved in a cart, and use the spring scale to pull the cart up the ramp at a steady speed.
 Observe and record the reading on the spring scale.
- **6.** Repeat Steps 4 and 5 each day using a new board with a different length.

WHAT TO DO

- **1. Predict** which board will require the most work to pull the cart up the ramp.
- 2. Measure the length of the boards. Record these lengths in your chart.
- **3.** Stack the books. **Measure** and **record** the height of each stack.
- **4.** Use the first board to make a ramp up to the top of the stack of books.

Prediction:

[Slope and Force				
	Time	Length of Ramp (length of board)	Height of books (the same each time)	Force (reading on spring scale)	
	Day 1				
0	Day 2				
	Day 3				
0	Day 4				

0_____

Conclusions

1. Which board needed the greatest force to move the cart up the ramp?

2. Which board needed the least force?

New Questions

1. When does a car exert the greatest force?

2. Write a new question you have about ramps and the use of force.

Activity Journal

Lesson 1 • Force and Work

Measuring Force

What happened when you and your partner pulled on the spring scale?

What happened when you and your partner pushed on the scale?

How much force does it take to move each object you have collected? **Record** your measurements in the chart.

Object	Force When You Pull	Force When You Push

Activity Journal Lesson 1 • Force and Work

Name ____

Conclusions

(1) What did you feel when your partner pushed or pulled on the spring scale?

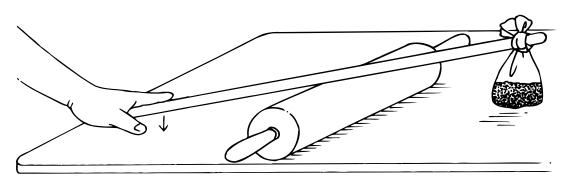
 ${f extsf{D}}$ Which objects made the scale read the highest when you pulled and pushed them?

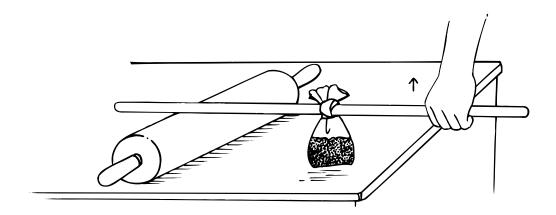
(E) Why did it take a bigger pull to move some objects?

Asking New Questions

(1) Both pushing and pulling made the spring scale read 10 N. How are pushing and pulling the same?

Why is it useful to be able to measure force?


Activity Journal Lesson 2 • Simple Machines


Making a Lever

Look at the pictures. Under each picture, **record** what happens when you use the lever this way.

Lever with Fulcrum at the Center and Load at One End

Lever with Fulcrum at One End and Load at the Center

Name ____

Conclusions

Which kind of lever would you use to move a very heavy object? Why?

Which kind of lever would you use to lift an object high in the air? Why?

Asking New Questions

Look around at school and at home to see levers in use. Can you find at least five?

What are some everyday uses for the kinds of levers you made in this activity?