
Next Generation Science Standards: Life Science Performance Expectations **CORRELATION GUIDE**

for Hole's Human Anatomy & Physiology

David Shier • Jackie Butler • Ricki Lewis

By David Shier, Jackie Butler, & Ricki Lewis 15th Edition, © 2019 ISBN 978-0-07-680996-7

Correlation of Next Generation Science Standards, Life Science Performance Expectations to *Hole's Human Anatomy & Physiology,* (15e) by David Shier, Jackie Butler, & Ricki Lewis

Next Generation Science Standards Life Science Performance Expectations	Hole's Human Anatomy & Physiology High School Edition, ©2019
HS-LS1 From Molecules to Organisms: Structures HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	and Processes 77, 134, 140-143 Assess: Chapter Assessments 146 (#21, #34) Practice 78 (#22), 143 (#27)
HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Does not callout use of model but topic coverage provided: 12, 22, 24-27 Assess: Chapter Assessments 35 (#4, #20) Assess: Integrative Assessment/Critical Thinking 36 (#2) Practice 14 (#8-#10), 27 (#22)
HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	Does not callout investigation but topic coverage provided: 15, 16-19, 498-499, 501, 502, 504, 510 Assess: Chapter Assessments 35 (#8-#11), 525 (##28, #29, #32) Assess: Integrative Assessment/Critical Thinking 36 (#4), 526 (#2, #6) Practice 19 (#16), 499 (#11), 510 (#30)
HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored	Does not callout use of model but topic coverage provided: 12, 15, 85, 109-112, 114-115, 117 <i>Practice</i> 85 (#2), 112 (#28) NA
chemical energy.	

Next Generation Science Standards Life Science Performance Expectations	Hole's Human Anatomy & Physiology High School Edition, ©2019
HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	72-78, 123-124, 133-134, 140-143 Assess: Chapter Assessments 81 (#32, #35, #41), 145 (#2, #3) Practice 125 (#2), 143 (#27)
HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.	Model not discussed. Topic covered at: 127-134, 933-936 Assess: Chapter Assessments 145 (#15, #16) Practice 129 (#10, #12, #14)
HS-LS2 Ecosystems: Interactions, Energy, and Dy	
HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	NA
HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	NA
HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	NA
HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	NA
HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	NA
HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	NA
HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.*	NA
HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	NA

Next Generation Science Standards Life Science Performance Expectations	Hole's Human Anatomy & Physiology High School Edition, ©2019
HS-LS3 Heredity: Inheritance and Variation of Tra	iits
HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	134, 825-827, 870, 908-913 Assess: Chapter Assessments 923 (#1, #2) Practice 909 (#3), 913 (#5)
HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	144-145, 826-827, 911 Assess: Chapter Assessments 146 (#35, #36), 861 (#3) Practice 145 (#29-#31), 827 (#3)
HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	Very brief mention of population variation: 914, 915
HS-LS4 Biological Evolution: Unity and Diversity	1
HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	NA
HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	NA
HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	NA
HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	NA
HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	NA
HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*	NA

Next Generation Science Standards Life Science Performance Expectations	Hole's Human Anatomy & Physiology High School Edition, ©2019
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	Can be addressed in the following: Clinical Connections 382, 384, 643, 882 From Science to Technology 64, ,872, 875
HS-ETS1-2 Design a solution to a complex real- world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	NA
HS-ETS1-3. Evaluate a solution to a complex real- world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	Can be addressed in the following: <i>Clinical Connections</i> 382, 384, 643, 882 <i>From Science to Technology</i> 64, ,872, 875
HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.	NA

Next Generation Science Standards Science and Engineering Practices	Hole's Human Anatomy & Physiology High School Edition, ©2019
1. Asking questions (for science) and defining problems (for engineering)	Scientific method: 11, 927 Engineering can be incorporated into the following: Assess: Integrative Assessments/Critical Thinking 175 (#1), 289 (#3), 903 (#6) Clinical Application 288, 463 From Science to Technology 80, 151, 173, 569, 872
2. Developing and using models	NA Could be incorporated into discussions of diffusion, mitosis, DNA, circulatory system, etc. but models are not specifically noted in any of the activities.
3. Planning and carrying out investigations	Coverage is steps of scientific method: 11, 927
4. Analyzing and interpreting data	Poor coverage: Assess: Integrative Assessments/Critical Thinking 249 (#6), 526 (#1), 555 (#8), 727 (#1, #6)
5. Using mathematics and computational thinking	Text is very light on asking students do to computations. Following involve mathematical concepts that could be expanded upon: 62, 69, 70, 910-912, 914-916 Assess: Integrative Assessments/Critical Thinking 81 (#1), 924 (#1, #4, #6) From Science to Technology 63 Practice 916 (#13)
6. Constructing explanations (for science) and designing solutions (for engineering)	Assess: Integrative Assessments/Critical Thinking 36 (#4, #6), 81 (#5, #6),119 (#7), 175 (#1, #8), 386 (#3, #5), 440 (#4) Practice 15 (#11, #12),
7. Engaging in argument from evidence	Assess: Integrative Assessments/Critical Thinking 81 (#7), 289 (#3), 526 (#4), 693 (#2), 727 (#2), 924 (#7)
8. Obtaining, evaluating, and communicating information	Not explicitly stated, but can be incorporated into Assess: Integrative Assessments/Critical Thinking 36 (#3), 81 (#2), 119 (#7), 344 (#6), 386 (#4), 485 (#2), 555 (#4)
Next Generation Science Standards Crosscutting Concepts	Hole's Human Anatomy & Physiology High School Edition, ©2019
1. Patterns. Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.	29, 61-62, 64, 65-67, 108-110, 134-136, 138, 150-151, 201, 872-881, 884-885 From Science to Technology 63, 138 Practice 136 (#21, #23), 203 (#1)
2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given	15, 16-19, 190-191, 498-499, 500-505, 510, 511, 514- 518, 522, 575-576, 587-590, 671, 753-754, 808-810, 812-813, 818-820 Assess: Integrative Assessments/Critical Thinking 197 (#3), 526 (#2, #6, #7), 821 (#2, #4, #5), 863 (#2) Clinical Application 591, 810-811, 814
contexts and used to predict and explain events in new contexts.	<i>Practice</i> 19 (#16), 499 (#10, #11), 501 (#14), 505 (#22), 510 (#30), 518 (#43), 576 (#28)

Next Generation Science Standards Crosscutting Concepts	Hole's Human Anatomy & Physiology High School Edition, ©2019
3. Scale, proportion, and quantity. In considering	Can be incorporated into the following:
phenomena, it is critical to recognize what is relevant	12, 60-62, 65-66, 72-77, 85, 123-125, 150-151
at different measures of size, time, and energy and to	Assess: Integrative Assessments/Critical Thinking 36
recognize how changes in scale, proportion, or	(#2)
quantity affect a system's structure or performance.	Practice 14 (#8-#10), 64 (#3, #4), 85 (#1)
4. Systems and system models. Defining the system	Can be incorporated into the following:
under study—specifying its boundaries and making	12, 17-19, 22-28, 202-203, 360-363, 417-438, 490-
explicit a model of that system—provides tools for	495, 497-499, 559-571, 652-654
understanding and testing ideas that are applicable	Clinical Application 420
throughout science and engineering.	From Science to Technology 569, 673
	The Whole Picture 200, 292, 489, 558, 651
5. Energy and matter: Flows, cycles, and	Can be incorporated into the following:
conservation. Tracking fluxes of energy and matter	15, 127-134, 702-704
into, out of, and within systems helps one understand	Assess: Chapter Assessments 145 (#12-#16)
the systems' possibilities and limitations.	Practice 129 (#9-#11), 130 (#12-#14), 131 (#15, #16), 134
	(#17-#20), 703 (#15, #16)
6. Structure and function. The way in which an object	11, 14, 88-92, 153-156, 201-203, 269-274, 561-565,
or living thing is shaped and its substructure	678-681
determine many of its properties and functions.	Assess: Integrative Assessments/Critical Thinking 119 (#4)
	Practice 12 (#6), 157 (#6, #7), 565 (#10)
	From Science to Technology 673
7. Stability and change. For natural and built systems	Can be incorporated into the following:
alike, conditions of stability and determinants of rates	14, 16-19, 29, 190-191, 194-195, 490-499, 751-754, 763,
of change or evolution of a system are critical	881-885, 895-902
elements of study.	Practice 19 (#15), 191 (#21), 196 (#27)