
Next Generation Science Standards: Life Science Performance Expectations CORRELATION GUIDE

for Principles of Environmental Science: Inquiry and Application

By William Cunningham and Mary Ann Cunningham High School Edition, © 2023 ISBN 978-0-07-700662-4

Correlation of Next Generation Science Standards, Life Science Performance Expectations to Principles of Environmental Science: Inquiry and Application by William Cunningham and Mary Ann Cunningham

Next Generation Science Standards Life Science Performance Expectations	Principles of Environmental Science: Inquiry and Applications ©2023	
HS-LS1 From Molecules to Organisms: Structures and Processes		
HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	80-81 <i>Exploring Science</i> 570-571 <i>Review Questions</i> 105 (#3)	
HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	72	
HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	72	
HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	NA	
HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	87-90 Critical Thinking 106 (#4) Section Review 90 (#1, #2)	

Next Generation Science Standards Life Science Performance Expectations	Principles of Environmental Science: Inquiry and Applications ©2023
HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	79-81 <i>Review Questions</i> 105 (#2)
HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.	89-90 <i>Critical Thinking</i> 106 <i>Review Questions</i> 105 (#4)
HS-LS2 Ecosystems: Interactions, Energy, and Dyn	amics
HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	149-153, 158-160 Math Connection 151 Review Questions 183 (#2)
HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	45, 130-131, 150-153, 174-176, 212-213, 216-225 Section Review 153 (#2)
HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	47-48, 70-71, 84-90, 91, 94. 96, 97-103, 318-324, 343, 376 Case Study 68-69 Data Analysis Lab 106 Key Concepts 92-93 Review Questions 105 (#6, #7) Section Review 74 (#1), 103 (#1-#3)324 (#1) Use the Practices 84, 97
HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	97 Data Analysis Lab 65, 106 Key Concepts 92-93 Review Questions 105 (#5) Use the Practices 91
HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	90, 98-99, 376 Section Review 103 (#2)
HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	72, 137-142, 343 Case Study 68-69, 185-186 Critical Thinking 145 (#5) Section Review 142 (#1-#3) Use the Practices 137

Next Generation Science Standards Life Science Performance Expectations	Principles of Environmental Science: Inquiry and Applications ©2023	
HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	176-179, 225, 227-234, 283-284, 297-298, 310- 312, 335-337, 361-364, 376-377, 385, 390-399, 401-402, 473-475, 512-517 Case Study 146-147 Critical Thinking 237 (#5), 314 (#3, #5) Exploring Science 226, 400-401, 608 Healthy Environment, Go Online 3, 67 Key Concepts 358-359, 518-519 Section Review 234 (#2), 312 (#1) What Do You Think? 168 Use the Practices 174, 310	
HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Can be incorporated into the following: 155-162, 172-174, 176-179 <i>Case Study</i> 146-147	
HS-LS3 Heredity: Inheritance and Variation of Traits		
HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	110 Exploring Science 570-571	
HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	110	
HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	Exploring Science 154	
HS-LS4 Biological Evolution: Unity and Diversity		
HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	109-110, 119-120 Case Study 107-108 Data Analysis Lab 145 Key Concepts 116-117	
HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	109-110 Critical Thinking 145 (#2) Key Concepts 116-117	

Next Generation Science Standards Life Science Performance Expectations	Principles of Environmental Science: Inquiry and Applications ©2023
HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	109-110, 123-124 Case Study 107-108 Data Analysis Lab 145 Exploring Science 154 Key Concepts 116-117 Use the Practices 109
HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	109-110, 123-124 Case Study 107-108 Data Analysis Lab 145 Key Concepts 116-117
HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	115, 118-119, 137-142, 212-213 Critical Thinking 145 (#5) Exploring Science 154 Key Concepts 116-117 Use the Practices 109, 137
HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	Healthy Environment: Go Online 537

Next Generation Science Standards Crosscutting Concepts	Principles of Environmental Science: Inquiry and Applications ©2023
1. Patterns. Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.	75-78, 119-120, 131-134, 187-199, 199-204 Critical Thinking 237 (#1) Data Analysis Lab 34, 65 Exploring Science 10-11
2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.	250-252, 263, 266, 299-301, 580-581 Case Study 240-241, 406-407, 613-614, 654-655 Critical Thinking 106 (#5), 485 (#1) Data Analysis Lab 145, 184 Exploring Science 95, 262, 294, 470 Key Concepts 264-265 Section Review 303 (#1-#3) Use the Practices 318
3. Scale, proportion, and quantity. In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system's structure or performance.	73-74, 248-252, 458-459, 560-561 Exploring Science 95, 127 Key Concepts 558-559
4. Systems and system models. Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.	47-48, 70-74. 187, 242-248, 318-324, 360, 455-459 Case Study 4-5, 35-36, 107-108, 453-454, 538-539, 631-634 Critical Thinking 278 (#1) Data Analysis Lab 106 Key Concepts 92-93, 358-359 Section Review 324 (#1) Use the Practices 70
5. Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems' possibilities and limitations.	84-91, 94, 96-103, 250-252, 319, 343, 360, 376, 431, 434-437, 460-461, 555-556, 560-561 Case Study 68-69 Critical Thinking 106 (#5), 278 (#2) Data Analysis Lab 106 Key Concepts 92-93, 358-359, 558-559 Life-Cycle Analysis 587 Section Review 90 (#1, #2), 103 (#1-#3), 252 (#3) Use the Practices 84, 91, 97
6. Structure and function. The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.	80-81, 109, 242-246, 509-511, 517, 520-521, 525-527 Section Review 512 (#3), 522 (#1, #2)
7. Stability and change. For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.	70-74, 134-142, 253-263, 266, 376, 455-459 Case Study 68-69, 146-147, 185-186, 240-241, 280- 281, 316-317, 368-369, 486-487 Critical Thinking 145 (#5) Data Analysis Lab 106, 184 Key Concepts 264-265 Section Review 74 (#1-#3), 137 (#1), 142 (#1-#3), 459 (#1) Use the Practices 130, 137

Next Generation Science Standards Science and Engineering Practices	Principles of Environmental Science: Inquiry and Applications ©2023
1. Asking questions (for science) and defining	18-19
problems (for engineering)	Get It? 18
	Use the Practices 6, 130, 199, 253, 282, 339, 390,
	438, 465, 507, 638, 677
2. Developing and using models	20, 148-149, 150-153, 170-171, 174-175
	Critical Thinking 184 (#1, #2), 404 (#4)
	Get It? 402
	Health Environment: Go Online 537
	Life-Cycle Analysis 587
	Review Questions 183 (#1)
	Use the Practices 24, 70, 84, 164, 205, 298, 354, 431,
	527, 555, 584, 615, 665
3. Planning and carrying out investigations	9, 12-13 20-21
5 , 5 5	Assessing Toxins 567
	Get It? 21
	Use the Practices 37, 109, 227, 349, 412, 688
4. Analyzing and interpreting data	21-22
, , , , , , , , , , , , , , , , , , , ,	Data Analysis Lab 34, 65, 106, 145, 184, 237, 279,
	314-315, 367, 404-405, 451-452, 485, 535, 579, 612,
	653, 656, 693
	Key Concepts 214-215, 594-595
	Math Connection 200
	Key Concepts 162-163
	Use the Practices 74, 208, 248, 418, 512
5. Using mathematics and computational thinking	11-12, 22, 111, 148-149, 150-153, 490-491, 638-641
	Critical Thinking 535 (#1)
	Exploring Science 10-11, 642-643
	Math Connection 12, 43, 134, 151, 157, 190, 255, 288,
	323, 372, 411, 424, 488, 508, 574, 592, 640
	Use the Practices 41, 91, 148, 155, 324, 564
6. Constructing explanations (for science) and	19-20
designing solutions (for engineering)	Health Environment, Go Online 239
	Use the Practices 47, 97, 172, 269, 304, 318, 370,
	408, 459, 522, 540, 622, 661
7. Engaging in argument from evidence	23
	Section Review 23 (#3), 312 (#2)
	Use the Practices 27, 137, 174, 212, 292, 361, 442,
	475, 499, 600, 631
	What Do You Think? 273, 395, 400-401, 501, 600
8. Obtaining, evaluating, and communicating	23
information	A Personal Hazardous Waste Inventory 602
	<i>Environment, Science, and Policy in Your Community</i> 660
	Key Concepts 669
	Use the Practices 17, 56, 179, 187, 242, 310, 328, 386,
	423, 455, 492, 551, 582, 644, 673