
Next Generation Science Standards: Engineering Design Performance Expectations CORRELATION GUIDE

for Principles of Environmental Science: Inquiry and Application

By William Cunningham and Mary Ann Cunningham High School Edition, © 2023 ISBN 978-0-07-700662-4

Correlation of Next Generation Science Standards, Engineering Design Performance Expectations to Principles of Environmental Science: Inquiry and Application by William Cunningham and Mary Ann Cunningham

Next Generation Science Standards Engineering Design Performance Expectations	Principles of Environmental Science: Inquiry and Applications ©2023
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	45-46, 269-276, 310-312, 376-377 Healthy Environment, 3 Key Concepts 308-309, 385, 432-433 Section Review 276 (#3), 312 (#3) What Do You Think? 395
HS-ETS1-2 Design a solution to a complex real- world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	19-20 Healthy Environment, 67
HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	176-179, 227-234, 269-276, 334-337, 360, 361-364, 376-377, 390-399, 401-402, 438-445, 447-449, 473-475, 527-532, 638-642, 647-650 Case Study 35-36, 146-147, 453-454 Exploring Science 226, 346, 400-401, 608, 642-643, 646 Health Environment, 239 Key Concepts 52-53, 308-309, 358-359, 385, 432-433, 518-519 Section Review 234 (#3), 276 (#3), 532 (#1) What Do You Think? 168, 338-339, 395
HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.	Healthy Environment, 537

Next Generation Science Standards Crosscutting Concepts	Principles of Environmental Science: Inquiry and Applications ©2023
1. Patterns. Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.	75-78, 119-120, 131-134, 187-199, 199-204 Critical Thinking 237 (#1) Data Analysis Lab 34, 65 Exploring Science 10-11
2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.	250-252, 263, 266, 299-301, 580-581 Case Study 240-241, 406-407, 613-614, 654-655 Critical Thinking 106 (#5), 485 (#1) Data Analysis Lab 145, 184 Exploring Science 95, 262, 294, 470 Key Concepts 264-265 Section Review 303 (#1-#3) Use the Practices 318
3. Scale, proportion, and quantity. In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system's structure or performance.	73-74, 248-252, 458-459, 560-561 Exploring Science 95, 127 Key Concepts 558-559
4. Systems and system models. Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.	47-48, 70-74. 187, 242-248, 318-324, 360, 455-459 Case Study 4-5, 35-36, 107-108, 453-454, 538-539, 631-634 Critical Thinking 278 (#1) Data Analysis Lab 106 Key Concepts 92-93, 358-359 Section Review 324 (#1) Use the Practices 70
5. Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems' possibilities and limitations.	84-91, 94, 96-103, 250-252, 319, 343, 360, 376, 431, 434-437, 460-461, 555-556, 560-561 Case Study 68-69 Critical Thinking 106 (#5), 278 (#2) Data Analysis Lab 106 Key Concepts 92-93, 358-359, 558-559 Life-Cycle Analysis 587 Section Review 90 (#1, #2), 103 (#1-#3), 252 (#3) Use the Practices 84, 91, 97
6. Structure and function. The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.	80-81, 109, 242-246, 509-511, 517, 520-521, 525-527 Section Review 512 (#3), 522 (#1, #2)
7. Stability and change. For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.	70-74, 134-142, 253-263, 266, 376, 455-459 Case Study 68-69, 146-147, 185-186, 240-241, 280-281, 316-317, 368-369, 486-487 Critical Thinking 145 (#5) Data Analysis Lab 106, 184 Key Concepts 264-265 Section Review 74 (#1-#3), 137 (#1), 142 (#1-#3), 459 (#1) Use the Practices 130, 137

Next Generation Science Standards Science and Engineering Practices	Principles of Environmental Science: Inquiry and Applications ©2023
Asking questions (for science) and defining	18-19
problems (for engineering)	Get It? 18
	Use the Practices 6, 130, 199, 253, 282, 339, 390,
	438, 465, 507, 638, 677
2. Developing and using models	20, 148-149, 150-153, 170-171, 174-175
	Critical Thinking 184 (#1, #2), 404 (#4)
	Get It? 402
	Health Environment: Go Online 537
	Life-Cycle Analysis 587
	Review Questions 183 (#1)
	Use the Practices 24, 70, 84, 164, 205, 298, 354, 431,
	527, 555, 584, 615, 665
3. Planning and carrying out investigations	9, 12-13 20-21
3. Planning and carrying out investigations	Assessing Toxins 567
	Get It? 21
	Use the Practices 37, 109, 227, 349, 412, 688
4. Analyzing and interpreting data	21-22
1.7 Mary 2 mg and merpreting data	Data Analysis Lab 34, 65, 106, 145, 184, 237, 279,
	314-315, 367, 404-405, 451-452, 485, 535, 579, 612,
	653, 656, 693
	Key Concepts 214-215, 594-595
	Math Connection 200
	Key Concepts 162-163
	Use the Practices 74, 208, 248, 418, 512
5. Using mathematics and computational thinking	11-12, 22, 111, 148-149, 150-153, 490-491, 638-641
5. Osing mathematics and computational thinking	Critical Thinking 535 (#1)
	Exploring Science 10-11, 642-643
	Math Connection 12, 43, 134, 151, 157, 190, 255, 288,
	323, 372, 411, 424, 488, 508, 574, 592, 640
	Use the Practices 41, 91, 148, 155, 324, 564
6. Constructing explanations (for science) and	19-20
designing solutions (for engineering)	Health Environment, Go Online 239
designing solutions (for engineering)	Use the Practices 47, 97, 172, 269, 304, 318, 370,
7 Engaging in argument from ovidence	408, 459, 522, 540, 622, 661
7. Engaging in argument from evidence	Section Review 23 (#3), 312 (#2)
	Use the Practices 27, 137, 174, 212, 292, 361, 442,
	475, 499, 600, 631
O Obtaining analysting and a second states	What Do You Think? 273, 395, 400-401, 501, 600
8. Obtaining, evaluating, and communicating	23
information	A Personal Hazardous Waste Inventory 602
	Environment, Science, and Policy in Your Community
	660
	Key Concepts 669
	Use the Practices 17, 56, 179, 187, 242, 310, 328, 386,
	423, 455, 492, 551, 582, 644, 673