
Abstract: This paper provides an overview
and research summary of Direct Instruction
(DI) mathematics programs, specifically DIS-
TAR Arithmetic I and II (Engelmann &
Carnine, 1975, 1976), Corrective
Mathematics (Engelmann & Carnine, 1982),
and Connecting Math Concepts (CMC;
Engelmann, Carnine, Kelly, & Engelmann,
1996a). A comparison of the constructivist
approach to the direct or explicit approach to
math instruction was conducted. Overviews
and ways in which DI math programs meet
the 6 principles for improving math instruc-
tion as provided by the National Council of
Teachers of Mathematics (NCTM; 2000b) are
noted. Finally, a research review and analy-
sis of DI math programs published since
1990 (yielding 12 studies) was completed.
Seven of the 12 studies compared DI math
programs to other math programs. Four
studies investigated the efficacy of DI math
programs without comparison to other math
programs. A meta-analysis conducted by
Adams and Engelmann (1996) was also
described. Study characteristics (i.e., refer-
ence, program or program comparison, par-
ticipants, research design, dependent
variable(s)/measures, and results) were
examined for each of the 12 studies. Eleven
of the 12 studies showed positive results for
DI math programs. Eight areas for future
research are included.

This paper provides a review of DI mathemat-

ics programs including DISTAR Arithmetic I and

II, Corrective Mathematics, and CMC. In addition,

the constructivist approach and the direct or

explicit approach to math instruction are com-

pared. Primary emphasis was placed on the

direct approach and how DI math programs

meet NCTM’s six principles for improving

math instruction. A research review of studies

published after 1990 using these programs was

also conducted. Finally, areas for future

research on DI math programs are provided.

Overview of Math Statistics
In our rapidly changing and technologically

dependent society, we are faced with the need

for a solid understanding of mathematical

skills and concepts. This need is no longer

limited to scientific and technical fields.

Virtually every type of employment requires a

more sophisticated understanding of mathe-

matics. For example, in a 1989 report by the

National Research Council, over 75% of all

jobs required proficiency in simple algebra and

geometry, either as a prerequisite to a training

program or as part of a licensure examination.

Further, in a more recent report by the Bureau

of Labor Statistics (2002), estimates indicate

that four of the top five employment growth

fields will require a bachelor’s degree in tech-

nical studies such as mathematics or computer

science. Given the emphasis of mathematical

skills in our society, it seems critical that our

students should demonstrate basic mathemati-
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cal and higher order thinking skills to be suc-

cessful in present and future environments.

In 1995, the largest international study (Third

International Mathematics and Science Study

[TIMMS]) of academic achievement was con-

ducted by the International Study Center

(ISC) at Boston College. This study included

over half a million students from 41 countries.

According to the ISC’s report (2001), when

compared to other countries, math scores in

the United States were ranked in the bottom

half of the participating countries. American

4th graders ranked 12th out of 26, 8th graders

ranked 28th out of 41, and 12th graders ranked

19th out of 21 countries who participated in

the assessment.

The National Center for Education Statistics

(2001) published its most recent results of the

2000 National Assessment of Educational

Progress. In this report, known as The Nation’s
Report Card, the mathematics achievement

levels of 4th-, 8th-, and 12th-grade students

were assessed. The following three levels of

performance were identified:

1. basic: this level denotes partial mastery of

prerequisite knowledge and skills that are

fundamental for proficient work at each

grade.

2. proficient: the proficient level represents

solid mathematical performance for each

grade assessed. Students reaching this level

have demonstrated competency over chal-

lenging subject matter, including mathemati-

cal knowledge, application of such knowledge

to real-world situations, and analytical skills.

3. advanced: the advanced level signifies supe-

rior performance. (p. 9)

The proficient level is the overall performance

goal for all students. Results indicated that only

26% of 4th-grade students, 27% of 8th-grade

students, and 17% of 12th-grade students per-

formed at the proficient level in math.

NCTM Principles
Given the mathematical performance of our

students on various assessments and compar-

isons conducted within and beyond the U.S., it

seems imperative to examine how best to teach

math in our public schools. The NCTM is the

world’s largest mathematics education organi-

zation, founded in 1920. The mission of the

NCTM (2000a) is “to provide the vision and

leadership necessary to ensure a mathematics

education of the highest quality for all stu-

dents” (p. 1). In order to accomplish this mis-

sion, the NCTM (2000b) developed five

overall curricular goals for student success in

mathematics: (a) learning to value mathemat-

ics, (b) becoming confident in one’s own math-

ematical ability, (c) becoming a mathematical

problem solver, (d) learning to communicate

mathematically, and (e) learning to reason

mathematically. The NCTM (2000b) devel-

oped Principles and Standards for School
Mathematics as a framework for guiding educa-

tional professionals in meeting these five goals.

While the standards describe the mathematical

content and processes that students should learn,

the principles describe features of high quality

mathematics education (2000b). In an earlier

paper, Kelly (1994) provided examples from

various levels of CMC to illustrate how these

standards can be met through CMC. This paper

focuses on how the principles (vs. standards)

were met by CMC, DISTAR I and II, and

Corrective Mathematics. According to the NCTM

(2000b), the six principles should be used to

influence the development and selection of

curricula, instructional planning, assessment

design, and establishment of professional

development programs for educators (see Table

1). It is through these six principles that edu-

cators can begin to address the composite

themes of high quality mathematics education.

Primary Approaches 
to Math Instruction
There are two primary approaches to mathe-

matics instruction. These include the construc-

tivist approach and the direct or explicit
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approach (see Table 2). According to

Applefield, Huber, and Moallem (2000/2001),

constructivism is based on a postulate that stu-

dent learning is influenced by four primary fac-

tors: (a) learners construct their own learning,

(b) new learning is dependent upon students’

existing understanding of the world, (c) social

interaction plays a critical role in that students

work in heterogeneous cooperative learning

groups, and (d) authentic learning tasks are

used for meaningful learning. The construc-

tivist approach is primarily an inquiry- or dis-

covery-oriented approach. Students are put

into learning situations that allow them to “dis-

cover” which problem solving strategies will be

the most effective. Through exposure to real-

life situations, students use inductive reason-

ing to make generalizations about

mathematical concepts and problem solving

strategies. The following is an example of a

constructivist lesson taken from Math
Trailblazers (TIMS Project: University of

Illinois at Chicago, 1998, p. 61).

Recycling 100 Cans. Have the children

bring in aluminum cans for recycling.

The first goal might be to collect 10

cans, then 50, and finally, 100. Of

course, this can be a continuing project

for your class. Have the class figure out

how many cans would have to be

brought in by each child to reach the

goal of 100 cans, or if every child brings

in a can every day, how many days will

it take to reach 100 cans? 

First, students are encouraged to brainstorm

which problem solving strategies would be

most effective in solving their problem. Then,

through trial and error, a solution is reached.
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The Equity Principle Excellence in mathematics education requires equity—

high expectations and strong support for all students.

The Curriculum Principle A curriculum is more than a collection of activities; it must 

be coherent, focused on important mathematics, and 

well-articulated across the grades.

The Teaching Principle Effective mathematics teaching requires understanding what 

students know and need to learn and then challenging and 

supporting them to learn it well.

The Learning Principle Students must learn mathematics with understanding, actively

building new knowledge from experience and prior knowledge.

The Assessment Principle Assessment should support the learning of important 

mathematics and furnish useful information to both teachers 

and students.

The Technology Principle Technology is essential in teaching and learning mathematics: 

it influences the mathematics that is taught and enhances 

students’ learning.

Table 1
NCTM Principles for Improving Math Instruction



A second approach to mathematics instruction

is known as an explicit or direct approach. In

this approach, teachers help students acquire

knowledge in the form of concepts, principles

or rules, cognitive strategies, and physical

operations (Kozloff, LaNunziata, Cowardin, &

Bessellieu, 2000/2001). This knowledge is

most effectively taught in the following man-

ner: (a) teaching with clear objectives; (b)

teaching concepts, principles, strategies, and

operations explicitly and systematically; and

(c) monitoring progress continually (Kozloff et

al.). Stein, Silbert, and Carnine (1997) refer to

explicit instruction as being clear, accurate,

and unambiguous; therefore, the clearer the

instruction, the more efficient it will be. This

approach provides a comprehensive set of pre-

scriptions for organizing instruction so that

students acquire, retain, and generalize new

learning in a manner that is as humane, effi-

cient, and effective as possible. The following

is an example of part of a lesson using an

explicit or direct approach to instruction as

provided by Stein et al. (p. 65).
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Teacher Students

1. (Give students paper and pencil.)

2. You are going to write a problem. First, you’ll say it. Six plus two equals how

Listen: Six plus two equals how many? Say that. many?

To correct: Respond with students until they can say the statement 
at the normal rate of speech.

3. Now we’ll say it the slow way. Every time I clap, we’ll say 

a part of the statement. 

(Respond with the students.) Get ready.

(Clap) Six. (Pause two seconds; clap.) six

Plus (Pause two seconds; clap.) Two. plus two 

(Pause two seconds; clap.) Equals. equals

(Pause two seconds; clap.) How many? how many?

(Repeat step 3 until students appear able to respond on their own.)

4. Now I’ll clap and you say the statement by yourselves. Six plus two equals

(Pause.) Get ready. (Clap at two-second intervals.) how many?

To correct: Respond with students.

5. Now write the problem. Students write 6 + 2 = ___

6. (Repeat steps 1–5 with three more equations.)



Efficacy of Direct Approach in
Meeting the NCTM Principles for
Improving Math Instruction
As shown in Table 1, the NCTM (2000b) rec-

ommended six principles to guide educators in

making sound decisions about mathematics

instruction. The direct approach to teaching

mathematics is an effective and efficient way

to meet these principles. Within this direct

approach to teaching, Stein et al. (1997) iden-

tified three variables for effective instruction:

(a) effective instructional design, (b) effective

presentation techniques, and (c) logical organ-

ization of instruction. Descriptors of each of

these variables follow.

Effective instructional design. Effective instruc-

tional design consists of nine elements. First,

long- and short-term objectives must by speci-

fied. Both long- and short-term objectives

should explicitly state observable behaviors,

performance criteria, and the conditions under

which the behavior will be performed. Long-

term objectives should specify exactly what stu-

dents should do at the end of an educational

program. The following is an example of a long-

term objective taken from Lignugaris/Kraft,

Marchand-Martella, and Martella (2001):

“Given a worksheet with 20 addition problems

up to 3D + 3D + 3D with and without

regrouping, Larry will write correct answers

with 90% accuracy on three consecutive weekly

classroom exercises” (p. 56). On the other

hand, short-term objectives are based on the

component skills needed to reach the long-term

goal. The following is an example of a short-

term objective taken from Lignugaris/Kraft et

al.: “Given a worksheet with 10 addition prob-

lems with sums less than 19 and both addends

less than 10, Larry will write correct answers
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Constructivist approach

• Teacher presents real-life situations and

facilitates inquiry- or discovery-based prob-

lem solving.

• Students construct their own learning based

on their current understanding of the world

usually within heterogeneous cooperative

learning groups.

• Steps in student learning process:

1. Presented with real-life situation.

2. Brainstorm possible problem solving

strategies.

3. Solution reached through trial and error.

• Spiral-based curriculum design.

Explicit or direct approach

• Teacher directly teaches concepts, principles

or rules, cognitive strategies, and physical

operations.

• Comprehensive set of prescriptions for

organizing instruction to guide students’

acquisition, retention, and generalization of

new knowledge.

• Three variables for effective instruction

(Stein et al., 1997):

1. Effective instructional design.

2. Effective presentation techniques.

3. Logical organization of instruction

• Strand design.

Table 2
Summary of Two Primary Approaches to Math Instruction



with 90% accuracy on three consecutive weekly

classroom exercises” (p. 56).

Second, efficient procedural strategies must be

designed. Kameenui and Carnine (1998)

define a strategy as a set of skills used to

acquire and use knowledge. To maximize stu-

dent learning and instructional efficiency, it is

imperative that strategies be taught to allow

students to solve the greatest number of prob-

lems with the fewest possible number of steps

(Kameenui & Carnine, 1998; Stein et al.,

1997). The following is a number-family prob-

lem solving strategy as noted by Stein et al.:

The number-family strategy is based on

the concept that three numbers can be

used to form four math statements. For

example, the numbers 2, 5, and 7 yield

2 + 5 = 7, 5 + 2 = 7, 7 - 5 = 2, and 

7 - 2 = 5. In a typical problem, two of

the numbers in the family are provided.

Students place these numbers where

they belong in the family and then

determine whether the missing number

is obtained by adding or subtracting.

The strategy is applied to word prob-

lems in that if the total number of a

fact family is given, the problem

requires subtraction. For example,

“Kyle had two snakes. Now he has

seven snakes. How many more snakes

did he get?” The last sentence asks

about how many more, not about the

total. So one of the numbers in the

problem, 2 or 7, must be the big num-

ber, the total. The phrase “Now he has

7” indicated that 7 is the total number.

Students then subtract 2 from the total

number; 7 - 2 = 5. Kyle got 5 more

snakes. (p. 221)

Third, necessary preskills must be deter-

mined. Instruction should be sequenced so

that the component skills of a strategy are

taught before the strategy itself is introduced.

For example, the strategy for solving addition

problems and repeating addition statements

should be taught before column addition prob-

lems are taught. Component skills must be

mastered before students can be expected to

use them as a part of a strategy.

Fourth, preskills should be logically sequenced

to maximize student learning. Three sequenc-

ing guidelines are recommended when intro-

ducing new information to students. First,

preskills of a strategy are taught before the

strategy. For example, when teaching students

to add single numbers to teen numbers with

sums over 20, students must have the follow-

ing preskills: symbol identification, place

value, basic addition facts, and renaming.

Along these lines, Carnine (1980) found that

preteaching the component skills of a multi-

plication algorithm resulted in more rapid

learning of the complex skill than teaching the

components and the complex skill concur-

rently. Second, easy skills are taught before

more difficult ones. For example, students

should be taught the “regular” teen numbers

14, 16, 17, 18, and 19 before the “irregular”

teen numbers 11, 12, 13, and 15. It is easier to

learn the names and, therefore, the value of

the number 17 (“seventeen”). Conversely, the

number 11 is considered “irregular” and more

difficult to learn (“eleven” not “one-teen”).

Finally, information that is likely to be con-

fused is not introduced consecutively. For

example, students are likely to confuse the

numerals 6 and 9, so they should not be intro-

duced consecutively.

Fifth, teaching procedures must be selected

for three types of tasks: motor, labeling, and

strategy tasks, because each type of task

requires a different teaching procedure (Stein

et al., 1997). Motor tasks, which require stu-

dents to articulate a rule or to perform a pre-

cise movement, are taught using the following
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four-step teaching procedure: model, lead,

test, and delayed test. An example of this pro-

cedure used to teach students to articulate

the equality rule in addition is shown in

Figure 1 (Engelmann, Carnine, Kelly, &

Engelmann, 1996b, p. 50). Workbook practice

provides the delayed test step in the motor

task procedure.

Labeling tasks, which require students to say

the word that correctly labels an object, are

taught using the following three-step teaching

procedure: model, alternating test, and

delayed test. An example of this procedure,

used to teach students how to read thousands

numbers, follows (Stein et al., 1997, p. 76).

Journal of Direct Instruction 59
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Figure 1
Example of a motor task used to teach 

students to articulate a rule.

EXERCISE 1 EQUALITY
a. (Write on the board:)

• This is a very important sign that we’ll use to
work on hard problems. This sign is called an
equal sign.

b. What’s it called? (Signal.) An equal sign.
(Repeat step b until firm.)

c. (Draw a circle on each side of the equal sign:)

• Here’s a rule about the equal sign: You must end
up with the same number on both sides of the
equal sign. Listen again: You must end up with
the same number on both sides of the equal sign.
Watch.

• (Make 3 lines in the left circle:)

• I made lines on one side of the equal sign.
Everybody, how many lines did I make?

(Signal.) 3.
• I must end up with the same number on both

sides of the equal sign. So how many lines do I
have to make on the other side of the equal sign?
(Signal.) 3

• (Make 3 lines in the right circle:)

=

= 

= 

=

• I did it. I ended up with 3 on both sides of the
equal sign. So it says 3 equals 3. What does it
say? (Signal.) 3 equals 3.

• (Erase the lines.)
d. New problem: I’m going to make little marks on

one side of the equal sign. Watch.
(Make 2 marks in the right circle:)

• How many marks did I make on one side of the
equal sign? (Signal.) 2.

• I must end up with the same number on both
sides of the equal sign. So how many marks do I
have to make on the other side? (Signal.) 2.

• (Make 2 marks in the left circle:)

• I ended up with 2 on both sides of the equal sign.
So it says 2 equals 2. What does it say?
(Signal.) 2 equals 2.

• (Do not erase the board.)

= 

= 



Finally, strategy tasks, which require the inte-

gration of a series of sequential steps to form a

generalizable strategy, are taught using model-

ing, guided practice, and supervised independ-

ent work. An example of a strategy task, used

to teach students how to divide using the

short-form algorithm, is shown in Figure 2

(Stein et al., 1997, p. 204).

Sixth, teaching formats are designed to specify

what teachers will say and do. These formats

allow teachers to focus more attention on stu-

dent performance. Figure 3 shows a sample

format for teaching students how to find vol-

ume (Engelmann, Carnine, Kelly, &

Engelmann, 1996d, pp. 348–349).

Seventh, appropriate examples are chosen for

motor, labeling, and strategy tasks. Stein et al.

(1997) recommend the following for choosing

these examples. Examples should involve the

current strategy or a previously mastered strat-

egy. In addition, examples of previously intro-

duced problem types should be included. This

aspect of instructional design allows students

to practice the new strategy, review previous

strategies, and learn to differentiate between

when to use specific strategies for a variety of

similar problems.

Eighth, guided practice and review are used to

ensure mastery of skills. Long-term skill reten-

tion can be facilitated in two ways: (a) massed

practice should be done until fluency and mas-

tery are reached, and (b) systematic review

should be incorporated. Dixon (1994) noted

that systematic review should distribute

review opportunities over time to contribute

to long-term retention and automaticity of

knowledge, accumulate information taught in

review (after A and B are taught, A and B are

reviewed together), and vary review items to

promote generalization and transference.

Finally, progress monitoring procedures must

take place at regular intervals. These proce-

dures should focus on curricular objectives and

should assess progress on what is actually

being taught in the classroom. By knowing the

specific skills that students need to master,
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Teacher Students

1. When a big number has one comma, the comma tells

about thousands. Here’s the rule. The number in front

of the comma tells how many thousands. What does 

the number in front of the comma tell? how many thousands

(Write on board: 6,781.)

2. What number comes in front of the comma? 6

So what is the first part of the number? 6 thousand

3. (Point to 781.) Get ready to read the rest of the number. 781

4. Now you are going to read the whole number. 6,781

(Point to 6, then comma, then 781.)

5. (Repeat steps 2–4 with these numbers:
2,145 3,150 5,820 6,423.)

6. (Give individual turns to several students.)



strategies aimed at teaching those skills can be

developed. An example of this type of proce-

dure can be seen in Figure 4 (Engelmann,

Carnine, Kelly, & Engelmann, 1996c, p. 22).

Effective presentation techniques. The second of

three variables in effective instruction as

noted by Stein et al. (1997) involves the use

of effective teacher presentation techniques.

These techniques involve maintaining student

attention during group instruction and teach-

ing to criterion. In order to maintain student

attention, explanations should be brief and

concise. Students should be given frequent

opportunities to respond during instructional

times (Paine, Radicchi, Rosellini, Deutchman,

& Darch, 1983). Unison responding is one way

to ensure all students are actively engaged in

the learning process. This type of presentation

technique requires the use of signals. To signal

a unison response, the teacher gives direc-

tions; provides a thinking pause; and cues the

response by pointing, tapping a pencil, or

snapping her fingers, for example. Additionally,

adequate pacing is needed. Pacing requires

material to be presented in a lively manner

and without hesitation by the teacher. Finally,

seating arrangements should be considered.
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Figure 2
Example of a strategy task. 

Basic Steps in the Short-Form Algorithm

TEACHER STUDENTS

1. Read the problem. 7 goes into 238.

2. Underline the part you work first. Students underline .

3. Say the underlined part. 7 goes into 23.

4. Write the answer above the last underlined digit.

5. Multiply 3 ✕ 7, subtract, and then bring down

the next number.

6. Read the new problem. 7 goes into 28.

7. Write the answer number above the digit you just

brought down.

8. Multiply and subtract to determine the remainder.

9. Say the answer. 7 goes into 238, 34 times.



During large-group instruction, lower perform-

ing students should be seated at the front of

the room to allow teachers to monitor their

behavior more effectively. During small-group

instruction, students should be seated in a

semicircle with lower performing or easily dis-

tracted students seated toward the middle of

the group. 

In addition to maintaining student attention,

teachers should also teach to criterion. In

order to ensure all students reach mastery,

62 Winter 2004
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Figure 3
Example of a format for teaching students how to find volume 

from Connecting Math Concepts: Level F.

EXERCISE 5  VOLUME
Mixed set
a. Find part 5.
• Some of these figures come to a point. Others

don’t. Remember, for figures that do not come to
a point, you find the area of the base times the
height. For figures that come to a point, you find
the area of the base times the height. Then what
do you divide by? (Signal.) 3.

b. Find the volume of figure A. Start with the equa-
tion for volume. Raise your hand when you’re fin-
ished.
(Observe students and give feedback.)

• (Write on the board:)

• Here’s what you should have. The area of the base
is 27 and 5-tenths square inches. Times the
height of 16. That’s 440. Divided by 3. The vol-
ume is 146 and 67-hundredths cubic inches.

d. Your turn: Work the rest of the problems in part 5.
Raise your hand when you’re finished. 
(Observe students and give feedback.)

Key:
c. Area of b x h = V

113.04 x 6 = V
V = 678.24 cu in

d. Area of b x h = V
3

9.45 x 3.3 
= V

3
V = 10.40 cu ft

e. Area of b x h 
= V

3
254.34 x 28 = V

3
V = 2373.84 cu cm

e. Find part J on page 361 of your textbook. That
shows what you should have for problems C, D,
and E. Raise your hand if you got everything right.

• Figure A has a triangular base. The area of the
base is 51 square meters. Times the height of 22.
That’s 1,122 cubic meters.

c. Figure B also has a triangular base, but it comes to
a point.

• Find the volume of figure B. Raise your hand
when you’re finished.
(Observe students and give feedback.)

• (Write on the board:)

a. Area of b ✕ h = V
51 ✕ 22 = V

V = 1,122 cu m

b. Area of b ✕ h = V

3

27.5 ✕ 16 = V

3

V = 146.67 cu in



Stein et al. (1997) note that teachers must

present a particular format until students are

able to respond to every question or example

in the format correctly. This step involves

effective monitoring, error correction, and

appropriate diagnosis and remediation of

problems. Teaching to criterion is consistent

with the Teaching Principle noted by the

NCTM (2000b).

Logical organization of instruction. The third vari-

able in effective instruction as noted by Stein
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Note. From Engelmann, S., Carnine, D., Kelly, B., & Engelmann, O. (1996c). Connecting Math Concepts: Level C, teacher’s guide,
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Figure 4
Example of CBM from Connecting Math Concepts: Level C, Teacher’s Guide.

b. You have 206.

You lose 13.

You end up with    .

a. You have .

You find 23.

You end up with 97.

a. 32 hundreds

b. 7 tens

c. 7 hundreds

d. 35 hundreds

e. 36 tens

f. 15 tens
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b. b. 11 – 6 =

c. c. 9 – 6 =

d. d. 12 – 6 =

Part 1

Part 3

Part 4 Part 5

Part 6

Part 7

Part 8

Part 2

a. 7 – 6 = e. 9 – 6 =

f. 10 – 6 =

Write the numerals. Write the addition or
subtraction problem and
the answer for each column.
Then write the missing
numbers in the table.

T
ot

al

Total 58 27

15 25

6048

Make a number family for each problem. Write the
addition or subtraction problem and answer for each family.

9 90

Write the fractions.

Write the numbers you say when you count by nines.

a. Open your workbook and find test 6.
This is a test of things you’ve studied.
You can earn as many as 20 points for
doing well on the test. So work care-
fully.

b. Find part 1.
You’re going to write answers to prob-
lems. You’ll have to move pretty fast.

c. Touch A.
Here’s the problem: 47 plus 10. Write
the answer. √

• Touch B.
Listen: 63 plus 5. Write the answer. √

• Touch C.
Listen: 52 plus 4. Write the answer. √

• Touch D.
Listen: 29 plus 10. Write the answer. √

d. Find parts 2 and 3.
You have 1 and a half minutes to write
the answers for both parts 2 and 3. Get
ready. Go.
(Observe students, but do not give
feedback.)

• (After 11/2 minutes, say:) Stop. Cross
out the problems you didn’t finish. √

e. (If students have difficulty reading
items of instructions, read the material
to them.)

f. Finish the rest of the test on your own.
Raise your hand when you’re finished.



et al. (1997) is the logical organization of

instruction. There are two primary methods to

organize math instruction. One way involves a

spiral-based curriculum design present in

many constructivist basal math programs

today. In this design, lessons focus on a single

topic for a number of days. Students then

revisit these topics in each successive year

with greater depth. This method of curriculum

design, often referred to as “teaching for expo-

sure,” allows a large number of topics to be

covered briefly each year. According to Carnine

(1990), the intent of the spiral curriculum is

to add depth each year, but the practical result

is the rapid, superficial coverage of a large

number of topics each year. In fact, Porter

(1989) found as much as 70% of math topics

are given less than 30 min of instructional

time each year. 

A second way to organize math instruction is

through the strand design present in Direct

Instruction programs. This design includes

concepts or “big ideas” that are organized

around skill development strands allowing a

few important topics to be covered in 5- to 10-

min segments within the context of 30-min

lessons. Carnine (1990) cited a number of

advantages for organizing curricula around

strands: (a) students are more easily engaged

with a variety of topics within a single lesson,

(b) strands make the sequencing of compo-

nent concepts more manageable, and (c) les-

sons composed of several segments make

cumulative introduction feasible.

Direct Instruction Math Programs
Direct Instruction (DI) programs are a strand-

based approach to math instruction. They are

based on the explicit or direct approach to

teaching that consists of effective instructional

design, effective presentation techniques, and

a logical organization of instruction (as previ-

ously noted by Stein et al., 1997). DISTAR
Arithmetic I and II (Engelmann & Carnine,

1975), Corrective Mathematics (Engelmann &

Carnine, 1982), and Connecting Math Concepts

(Engelmann et al., 1996a) are the three

research-validated math programs published

by Science Research Associates (SRA).

DISTAR Arithmetic I. DISTAR Arithmetic I con-

sists of an initial placement test, 160 lessons,

140 take-home assignments, and 72 in-pro-

gram mastery tests. This program is effective

for students of any skill level from preschool

through the primary grades. Students com-

plete a placement test before they start the

program. They are then placed into flexible

skill groups. Lower performing students can

complete the program in fewer than 200

school days. Higher performing students may

complete the program in fewer than 108

school days. By skipping specific lessons, these

students may progress as quickly as they can. 

DISTAR Arithmetic II. DISTAR Arithmetic II
consists of 160 lessons, 160 take-home assign-

ments, three placement tests, and 15 in-pro-

gram mastery tests. According to Engelmann

and Carnine (1976), 

Children who have had 100 or more les-

sons of DISTAR Arithmetic I or a begin-

ning arithmetic program other than

DISTAR can successfully complete level

two since placement tests and proce-

dures for reviewing DISTAR Arithmetic I
are built into the program. (p. 1) 

As in DISTAR Arithmetic I, students complete a

placement test before they start the program.

They are then placed into flexible skill groups.

Group membership changes based on student

behavior on individual tests within daily les-

sons and in-program mastery tests. Table 3

shows a summary of the skill development

strands for DISTAR Arithmetic I and II.

Corrective Mathematics. Corrective Mathematics is

designed for students in Grades 3 through

postsecondary. The program may be used for

remedial work or as a part of a developmental

sequence. For example, students in Grades 4

through postsecondary can use the program
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for remediation if they have not yet mastered

addition, subtraction, multiplication, and/or

division. Students in Grades 3 through 6 who

have mastered basic counting and symbol

identification skills can use Corrective
Mathematics to develop advanced addition, sub-

traction, multiplication, and/or division skills.

The program consists of four basic modules

(addition, subtraction, multiplication, divi-

sion) and three supplemental modules (basic

fractions; fractions, decimals, and percents;

and ratios and equations). There are 65 les-

sons in the four basic modules, each with

individual student worksheets. The supple-

mental basic fraction module includes 55 les-

sons; the fractions, decimals, and percents

module contains 70 lessons; and the ratios and

equations module includes 60 lessons. Each of

the seven modules is accompanied by a mini-

mum of 15 mastery tests as well as sugges-

tions for remediation. Mastery tests measure

students’ acquisition of basic facts, opera-

tions, and story problems. 

Generally, two modules may be taught per

school year. The program also contains three

provisions for accelerating higher performing

students. First, each module contains a skip-

ping schedule for students whose performance

on mastery tests indicates accelerated progress.

Second, teachers may also teach more than one

lesson per day. Third, modules may be over-

lapped after students have completed Lessons

45 or 50 of their current module. 

There are two placement methods in Corrective
Mathematics. First, teachers may administer the

preskill test and the placement test that are

included in each specific module. Second,

teachers may administer a comprehensive

placement test that surveys skills across all

module areas. Table 4 shows a summary of the

skill development strands for the addition, sub-

traction, multiplication, and division modules.

The supplementary math modules are

designed to teach advanced mathematical

skills. They may be taught sequentially or

independently. The basic fractions module

may be added to the fourth-grade curricula.

The fractions, decimals, and percents module
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Skill development strands DISTAR I DISTAR II

Rote counting x x

Matching x

Symbol identification x x

Cross-out game x

Symbol writing x

Pair relations x

Numerals and lines x

Equality x

Matching x

Addition x x

Algebra addition x x

Counting backward x x

Subtraction x

Dictation x

Facts x x

Story problems x x

Facts for symbol identification x

Problems in columns x x

Figuring out facts x

More or less x x

Written story problems x x

Ordinal counting x

Consolidation x

Fact derivation x

Multiplication x

Fraction operations x

Length and weight measurement x

Applications of operations x

Negative numbers x

Table 3
Summary of Skill Development Strands 

for DISTAR Arithmetic I and II



and the ratios and equations module may be

added to the fifth- or sixth-grade curricula.

Table 5 shows a summary of the skill develop-

ment strands for the supplementary modules.

Connecting Math Concepts. Connecting Math
Concepts (CMC) consists of seven modules or

levels (A–F and Bridge). Concepts covered in

CMC are distributed across many successive

lessons to allow important connections to be

made and to provide ample time to become

competent at each strategy. According to

Engelmann et al. (1996c), CMC is particularly

effective with students who are at risk in

mathematics. CMC Levels A–D consist of 120

lessons, a placement test, and a mastery test

every 10th lesson. Level A is designed for first

grade and builds on counting experiences

within a variety of contexts. Level B is

designed for second grade and makes connec-

tions between mathematical concepts and

real-life situations. Level C is designed for third

grade and places a stronger emphasis on higher

order thinking skills. Level D is designed for

fourth grade and extends students’ mathemat-

ical understanding by building on the founda-

tion of Levels A–C. 

CMC Level E contains 125 lessons, a place-

ment test, and a mastery test every 10th les-

son. It is designed for fifth grade. Extending

the concepts and skills taught in earlier levels,

students analyze and solve increasingly com-

plex problems. 

The Bridge module falls between Level E and

Level F and can be used for older students

performing at a fifth- or sixth-grade level who

have not been through CMC Level E and who

have passed The Bridge placement test. It may

be used as a stand-alone course in preparation

for a basic pre-algebra course or, preferably, in

combination with CMC Level F for a more

complete mathematical foundation. The Bridge
contains 70 lessons and a mastery test every

10th lesson. 

CMC Level F contains 100 lessons and a mas-

tery test every 10th lesson. It is designed for

sixth grade. A placement test is not included

due to the assumption that students in Level F
have either successfully completed Level E or

have completed The Bridge. Level F prepares

students for success in higher math. Table 6

shows a summary of the skill development

strands for CMC.

In each of the seven levels of CMC, students

are provided with independent work for each

lesson. Teachers are provided with recommen-

dations for remediation when students are

found to be experiencing difficulties as indi-

cated by results on mastery tests.
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Skill development strands Addition Subtraction Multiplication Division

Facts x x x x

Place value x x x x

Operations x x x x

Story problems x x x x

Table 4
Summary of Skill Development Strands for 

Corrective Mathematics Basic Math Modules



Structure of DI Math Programs
DISTAR Arithmetic I and II, Corrective
Mathematics, and CMC are structured through

the use of tracks, formats, and tasks.

Tracks. Tracks (also called skill development

strands) consist of major skills or strategies.

An example of a track from DISTAR Arithmetic
I is Written Story Problems (Lessons

140–159). According to Engelmann and

Carnine (1975), the purpose of this track is to

teach students to solve simple, written story

problems independently. 

In keeping with the belief that necessary

preskills must be taught prior to their use in

a composite strategy, the following prerequi-

site skills for the written story problem track
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Skill development strands Basic Fractions, decimals, Ratios 

fractions and percents and equations

Addition of fractions

and whole numbers x x

Subtraction of fractions

and whole numbers x x

Multiplication of fractions

and whole numbers x x

Write mixed numbers for fractions x

Find equivalent fractions x

Addition and subtraction

of mixed numbers x

Multiplication and division

of mixed numbers x

Reducing improper fractions x

Writing decimals or 

percents for fractions x

Writing fractions or 

percents for decimals x

Writing fractions or decimals for percents x

Finding ratios x

Solving rate and distance problems x

Using basic problem solving strategy 

for word problems x

Using basic problem solving strategy 

for algebra problems x

Table 5
Summary of Skill Development Strands

for Corrective Mathematics Supplementary Modules
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Skill development strands Level A Level B Level C Level D Level E Bridge Level F
Counting x x

Symbols x

More/less/equal x x

Addition/subtraction x

Place value x x x x x

Problem solving x x x x x x x

Word problems x x x x x x

Application: money x

Following directions x

Addition and subtraction facts

Number relationships x x x x x

Number family tables x x x

Measurement x x

Column addition x x

Column subtraction x x x

Mental arithmetic x x x x

Money x x

Multiplication x x

Geometry: identifying shapes, 
finding perimeter and area x x x

Tables x

Addition and subtraction 
number families x

Multiplication and division facts x x

Column multiplication x x x

Division with remainders x x x x

Estimation x x

Calculator skills x x x

Equation concepts x

Analyzing data: tables x

Fractions x x x x

Coordinate system x x x x x

Graphs x x

Area x x

Volume x x x

Time x x

Table 6
Summary of Skill Development Strands for Connecting Math Concepts

continued



are (a) applying the appropriate strategy and

solving problems in addition (introduced in

Lesson 51), algebra addition (introduced in

Lesson 61), and subtraction (introduced in

Lesson 83); (b) writing arithmetic state-

ments that are dictated by the teacher (intro-

duced in Lesson 84); and (c) translating

verbal story problems into written arithmetic

statements (introduced in Lesson 102).

Throughout each track, focus changes from

teacher modeling to guided practice to inde-

pendent practice. 

Formats. Engelmann and Carnine (1975)

define formats as patterns of teaching steps

repeated in a number of successive lessons. A

format for Counting Events and Objects from

DISTAR Arithmetic I appears in Figure 5.

Formats are maintained for three or more les-

sons before the focus shifts from teacher mod-

eling to guided practice.

Tasks. A task is created by inserting a new set

of numbers into a format pattern in which the

wording remains unchanged. For example, the

format for teaching symbol identification of

the number 4 is shown in Figure 6. Notice

how the wording is changed within the same

format pattern to teach symbol identification

of the number 2 (also seen in Figure 6). Tasks

are presented in the simplest manner possible

to eliminate confusion and follow a specific
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Skill development strands Level A Level B Level C Level D Level E Bridge Level F
Statistics: range x

Whole number operations x x x x

Equations and relationships x

Decimals x x x

Percents x

Ratios and proportions x x

Ratio tables x x

Fraction number families x x x

Fraction operations x

Probability x x

Probability geometry x x

Operational relationships x x x

Rounding x

Whole number properties x

Mixed number operations x x

Decimal operations x

Circles x x

Angles and lines x x

Geometry facts x

Signed numbers x

Exponents x

Table 6, continued
Summary of Skill Development Strands for Connecting Math Concepts



sequence to ensure mastery of the five pro-

gram objectives. Subsequent tasks requiring

similar procedures are taught in order to

encourage generalization. 

How DI Math Programs Meet
NCTM’s Principles for Improving
Math Instruction
NCTM’s principles for improving math

instruction (NCTM, 2000b) can be met

through each of the DI math programs. First,

NCTM’s Equity Principle calls for excellence in

mathematics education with equally high

expectations and strong support for all stu-

dents. NCTM discourages “tracking” which is

defined as a long-term, often permanent

placement within an academic track based on

perceived mathematical abilities. DI math pro-

grams use flexible skill grouping based on cur-

rent levels of performance as determined by

daily progress monitoring. Such monitoring

consists of observations during lessons, per-

formance on take-home assignments, and per-

formance on in-program mastery tests. Group

membership changes as dictated by individual

student performance. In the Equity Principle,
NCTM strongly encourages that expectations

be the same for all students. DI math pro-

grams are based on specific performance objec-

tives which all students must master as they

progress through the program.

Second, NCTM’s Curriculum Principle states

that a curriculum is more than a collection of

activities; it must be coherent, focused on

important mathematics, and well articulated

across the grades. DI math programs meet

this principle by using a strand design. In

this design, lessons are organized around

concepts or “big ideas.” According to Dixon

(1994), big ideas make it possible for stu-

dents to learn the most and learn it most
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Note. From Engelmann, S., & Carnine, D. (1975). DISTAR Arithmetic I: Teacher’s guide, p. 22. Columbus, OH:

SRA/Macmillan/McGraw-Hill. Reproduced with permission of The McGraw-Hill companies.

Figure 5
Example of a format from DISTAR Arithmetic I.

TASK 4 COUNTING EVENTS AND OBJECTS Children Clap as You Count

Emphasize words in boldface.

Group Activity
a. You will count and clap, pausing one second between numbers. 

Let’s play a clapping game. Every time I count, 
I’m going to clap. Get ready.

One...two...three...four.
b. You will pause two seconds between numbers as you count.

Your turn. I’m going to count. You’re going to clap.
(Pause.) Get ready. One...two...three...four. Stop.

(The children clap as you count; they do not count.)

To correct If the children have trouble coordinating their clapping with 
your counting, physically guide their hands to help them clap.

c. Repeat b until the response is firm.
Individual Test

Call on several children for b.



efficiently. Specifically, DI math programs

are designed to guide students’ learning of

basic operations, strategies, and applications

to more complex applications throughout

each level and throughout each grade.

Furthermore, NCTM notes that extensive

field-testing should be conducted before

school districts select curricular mathematics

materials. DI programs have been imple-

mented and researched in a wide variety of
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Note. From Engelmann, S., & Carnine, D. (1975). DISTAR Arithmetic I: Teacher’s guide, pp. 108, 133. Columbus, OH:

SRA/Macmillan/McGraw-Hill. Reproduced with permission of The McGraw-Hill Companies.

Figure 6
Example of two tasks illustrating how a new set of numbers is inserted

into a format pattern, taken from DISTAR Arithmetic I.

TASK 2  SYMBOL IDENTIFICATION
Introducing a New Symbol

When you point to a symbol, hold your finger an inch
or two above the page. Touch with a definite motion
just below the symbol.
Emphasize words in boldface.

Group Activity

Do a, b, and c.

4
a. Point. This is a four. b. Point. Is this a four?

What is this? Touch 4. 4. Touch the dog. No.
Yes, this is a four. To correct: This is

not a four. 
Is this a four? No.

4
c. Point. Is this a four?

Touch 4. Yes.
To correct: Repeat a, then c.

Repeat a, b, and c in random order until responses are
firm.
d. When I touch it, tell me what it is.
e. Point to a or c. Pause. Get ready. Touch.

Touch a and c in random order until responses
are firm.

f. Randomly touch a, b, and c.
Individual Test

Call on some children to identify two symbols.

TASK 2  SYMBOL IDENTIFICATION
Introducing a New Symbol

When you point to a symbol, hold your finger an inch
or two above the page. Touch with a definite motion
just below the symbol.
Emphasize words in boldface.

Group Activity
Do a, b, and c.

2 4
a. Point. This is a two. b. Point. Is this a two?

What is this? Touch 2. 2. Touch 4. No.
Yes, this is a two. To correct: This is

not a two.
Is this a two? No.

2
c. Point. Is this a two?

Touch 2. Yes.
To correct: Repeat a, then c.

Repeat a, b, and c in random order until responses are
firm.
d. When I touch it, tell me what it is.
e. Point to a or c. (Pause.) Get ready. Touch.

Touch a and c in random order until responses
are firm.

f. Randomly touch a, b, and c.
Individual Test

Call on some children to identify two symbols.



settings for over 30 years (Adams &

Engelmann, 1996).

Third, NCTM’s Teaching Principle states that

teachers should understand what students

know and need to learn and then challenge and

support them to learn it well. NCTM encour-

ages teachers to reflect on and improve their

lessons with the support of colleagues within a

peer coaching model. This model allows teach-

ers to plan for maximum student success care-

fully. DI math programs meet this principle by

providing extensive preservice training for

teachers to ensure appropriate implementation

and effective instructional delivery. After train-

ing, teachers are provided with coaches who

conduct observations to determine areas for

improvement. Coaches and teachers then work

together to ensure maximum student and

teacher success. According to NCTM, teachers

should also be able to predict what students

will do when presented with particular prob-

lems and tasks. DI preservice training, program

guides, and teacher presentation books offer

precorrective strategies to minimize commonly

anticipated errors. DI math lesson formats also

contain specifically prescribed error correction

procedures; an example of this was shown in

Figure 5.

Fourth, NCTM’s Learning Principle states that

students must learn mathematics with under-

standing, actively building new knowledge

from experience and prior knowledge. NCTM

recommends that elementary students should

study mathematics from well-prepared teach-

ers for at least 1 hr a day. An example of how

DI math programs meet this standard can be

found in DISTAR Arithmetic I and II. The

teacher presents daily group instruction for

30–35 min, providing both modeling and

guided practice. Students spend 20–30 min

(or more, if necessary) completing independ-

ent seatwork. In DI math programs, after nec-

essary preskills have been mastered, students

also complete take-home work for added inde-

pendent practice. DI math programs answer

NCTM’s recommendation for well-prepared

teachers by using predesigned instructional

formats. Teacher preparation of lessons is kept

to a minimum thereby reserving valuable time

and energy for focusing on student perform-

ance. Another major concern of NCTM is that

students may become increasingly disengaged

in mathematics instruction. DI math programs

address this concern in two ways. First, higher

skilled students are allowed to move as quickly

through each program as necessary. In fact,

Vreeland et al. (1994) found that two groups

of academically talented students, who were

taught using CMC, made gains of approxi-

mately two grade levels in 1 year on the

Kaufman Test of Educational Achievement—

Comprehensive Form (KTEA—C). Second,

because DI math programs are strand-based,

the multitopic, fast-paced formats keep stu-

dents focused and motivated.

Further, the NCTM encourages conceptual

understanding and problem solving skills by

actively building new knowledge from experi-

ence and prior knowledge. In DI math pro-

grams, strategies are taught, rather than rote

skills, in a specified order to promote general-

ization from previously mastered skills to new

situations. According to Carnine and

Engelmann (1990), explicitly taught strategies

prepare students to see the total structure of a

problem. DI math lessons are organized

around skill development tracks or big ideas.

These big ideas are introduced in small steps

from one lesson to the next within each track.

As concepts are mastered through massed

practice, they are continuously reviewed.

Similarly, the strand design of DI math pro-

grams teaches students to differentiate

between situations which may appear to

require the same strategic solution, when in

fact, they may not. This combination of

massed practice and cumulative review allows

students to maintain prior knowledge while

actively building new knowledge of important

math concepts and strategies. 

Fifth, NCTM’s Assessment Principle states that

assessment should support the learning of
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important mathematics and furnish useful

information to both teachers and students. DI

math programs address this principle by pro-

viding frequent in-program mastery tests to

allow teachers to make daily decisions about

individual students’ progress. Additionally, with

students and educators being penalized for low

test scores on nationally normed achievement

tests, the issue of “teaching to the test”

becomes a great concern. DI math programs

have been shown to have positive effects on

norm-referenced test scores. Specifically, Brent

and DiObilda (1993) found similar scores

between DI math students and students who

were taught using a curriculum deliberately

aligned with districtwide standardized assess-

ments. NCTM also suggests that perhaps mul-

tiple forms of assessment may offer more

useful information in monitoring student

progress. DI math programs provide several dif-

ferent forms of assessment including in-pro-

gram mastery tests at frequent intervals,

take-home assignments, and fact games.

Finally, NCTM’s Technology Principle states that

technology should influence the skills taught

and enhance students’ learning. Therefore,

technology should be used to support the

learning of mathematics, not the learning of

technology. In so doing, NCTM recommends

that technology be embedded in the mathe-

matics program, rather than provided as a sup-

plemental element. Concurrently, the National

Assessment of Educational Progress (2001)

report stated that eighth graders whose teach-

ers reported that they permitted unrestricted

use of calculators in class had higher average

scores in 2000 than did students whose teach-

ers restricted calculator use. In CMC Levels
C–F students learn to use calculators to solve

increasingly complex operations. For example,

in CMC Level C, students use calculators to

solve addition, subtraction, multiplication, and

fraction problems. In CMC Level F, students

use calculators to solve division problems that

do not have whole-number answers and prob-

lems that multiply a fraction by a whole num-

ber or decimal. The use of the calculator in DI

math programs is to support students’ learning

of the fundamental operations (i.e., addition,

subtraction, multiplication, division) and to

support their skills in using these tools when

solving word problems. 

Research Synthesis on DI
Mathematics Programs
The purpose of this synthesis was to survey

the studies conducted using DI Mathematics

Programs (SRA). Studies including DISTAR I
and II, Corrective Mathematics, and CMC were

selected using the First Search, ERIC,

PsycINFO, Education ABS, and ProQuest

databases. Descriptors included the following:

Direct Instruction, DISTAR Arithmetic, DIS-
TAR Arithmetic I, DISTAR Arithmetic II, direct

instruction, direct teaching, direct verbal

instruction, explicit instruction, mathematics

instruction, Corrective Mathematics, and

Connecting Math Concepts. Ancestral searches of

reference lists were used to identify other pos-

sible research articles. Also, hand searches

were done in the following peer-reviewed jour-

nals: Effective School Practices, Journal of Direct
Instruction, and Education and Treatment of
Children. Research articles in peer-reviewed

journals were included for review. Articles

published before 1990 were not included in

this review. A total of 12 studies were analyzed

in this review.

Direct Instruction meta-analysis. Adams and

Engelmann (1996) conducted a meta-analysis

of DI programs including DISTAR Arithmetic I
and II, Corrective Mathematics, CMC, and other

DI programs. Included studies were required

to have the following elements: means and

standard deviations of groups, the use of a

suitable comparison group, and random selec-

tion of participants to groups. Thirty-four out

of 37 studies involved the active intervention

of DI programs. Three follow-up studies were

not included in the statistical analysis but

were reviewed in a separate chapter. In a

sample polling of means, 87% of the studies

favored DI programs, 12% favored non-DI
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programs, and 1% found scores to be the

same. In a sample polling of statistically sig-

nificant outcomes, 64% found statistically sig-

nificant differences in favor of DI programs.

Finally, in a summary of the statistical analy-

sis of math results, an effect size of 1.11 in

favor of DI math programs was found in 33 of

the comparisons (those studies that included

a math component).

DISTAR Arithmetic. Table 7 shows one study

using DISTAR Arithmetic I. Young, Baker, and

Martin (1990) compared DISTAR Arithmetic I
to a teacher-developed discrimination learning

theory (DLT) program based on the first 60

lessons of DISTAR Arithmetic I. Participants

included five students with intellectual dis-

abilities; each scored between 35–54 on the

Wechsler Intelligence Scale for Children—

Revised (WISC—R). All participants had artic-

ulation problems (responses were limited to

two- to three-word utterances). During the

baseline phase, DISTAR Arithmetic I was imple-

mented according to the program script.

During baseline, average performance on mas-

tery tests ranged from 18% to 73%, while aver-

age academic engaged time ranged from 18%

to 31%. During the DLT phase, average per-

formance on mastery tests ranged from 69% to

96%, while average academic engaged time

ranged from 56% to 84%. It was further deter-

mined over 5 days during a 5-week mainte-

nance probe that both mastery scores and

academic engaged time remained higher than

baseline rates. As a result, the author con-

cluded that the match-to-sample format of the

DLT phase was an effective adaptation of

DISTAR Arithmetic I in teaching math skills to

students with articulation problems.

Corrective Mathematics. Three studies were

found using the Corrective Mathematics (CM)

program (see Table 7). First, Parsons,

Marchand-Martella, Waldron-Soler, Martella,

and Lignugaris/Kraft (2004) examined the use

of CM in a secondary general education class-

room for students struggling in math as deliv-

ered by peer tutors. Ten students were

assigned to the learner group based on refer-

rals by a school counselor. All had failed the

lowest level of math available at that school.

Nine students were recruited by the CM
teacher, school counselors, and other high

school math teachers to serve as peer tutors.

All participants were pre- and posttested using

the Calculation and Applied Problems subtest

of the Woodcock Johnson—Revised: Test of

Achievement (WJ—R). After 60 instructional

days, the authors found that both learners and

peer tutors experienced posttest gains in one

or both areas of the WJ—R subtests.

Second, Glang, Singer, Cooley, and Tish

(1991) assessed the efficacy of CM in teaching

math skills to an 8-year-old student with trau-

matic brain injury. In this study, the student

was also instructed using Corrective Reading
Comprehension (Level A) to improve his reason-

ing skills. Instruction took place twice a week

over a period of 6 weeks. After 12 hr of

instruction, the authors found that the stu-

dent’s math fact rate and story problem accu-

racy improved. 

Finally, Sommers (1991) examined the effects

of a comprehensive DI program in improving

the overall performance of at-risk middle

school students over a 2-year period. CM mul-

tiplication, division, basic fractions, fractions-

decimals-percents, and ratios and equations

mathematics modules were used in conjunc-

tion with a variety of DI reading, spelling, and

writing programs. Students also used a variety

of supplemental material including: self-cho-

sen reading materials, Journeys (Harcourt Brace

Jovanovich), Warriner’s English Grammar and
Composition, DLM Growth in Grammar work-

books, and Heath Mathematics. In math meas-

ures, students made average gains of 1.2

months per month of instruction (as noted by

the author).

All three studies examined students with very

different characteristics across various settings.

In each study, authors found CM to be effec-

tive in increasing math skills. However, it

74 Winter 2004



Journal of D
irect Instruction

7
5

Table 7
Program Comparison Summary Information for Investigations Involving DI Math

Reference Program/comparison Participants/
characteristics

Research
design

Dependent

variable(s)/measures

Results

Adams &
Engelmann
(1996)

DI meta-analysis 37 studies Meta-analysis Overall program effectiveness 64% of studies found statistically
significant outcomes in favor of DI
programs. Statistical analysis of
studies including math found an
effect size of 1.11 in favor of DI math
programs.

Young, Baker, &
Martin (1990)

DISTAR Arithmetic I vs.
teacher-developed DLT
program based on the
first 60 lessons of the
DISTAR Arithmetic I
program

5 students with
mild mental
retardation and
articulation
problems

Multiple
baseline across
subjects

DISTAR Arithmetic I placement
test, teacher-designed test
(including: counting, matching,
selecting, numerosity, writing,
and equality), and academic
engaged time

Math skill scores were higher on
teacher-designed mastery tests during
DLT phase and across 5 days at a
5-week maintenance probe. Academic
engaged time higher during DLT
phase.

Glang, Singer,
Cooley, & Tish
(1991)

CM 8-year-old with
traumatic brain
injury

Multiple
baseline across
content areas

Math facts and story problems Math fact rate increased but
remained lower than average third
grader’s. Story problem accuracy
increased from 11.4% correct to
91.25% correct during instruction.

Parsons,
Marchand-Martella,
Waldron-Soler,
Martella, &
Lignugaris/Kraft
(2004)

CM 19 students:
10 learners and
9 peer tutors

One-group
pretest–
posttest

WJ—R Math Calculation
and Applied Math Problems
subtests

Both learners and peer tutors
improved in math calculation and
applied math problems.

Sommers (1995) CM 112 sixth,
seventh, and
eighth graders at
risk for academic
failure

One-group
pretest–
posttest

Pretest: Stanford Math
Posttest: Key Math
Diagnostic

Averaged 1.2 months gained per
month of instruction.
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Table 7, continued
Program Comparison Summary Information for Investigations Involving DI Math

Reference Program/
comparison

Participants/
characteristics

Research
design

Dependent

variable(s)/measures

Results

Brent & DiObilda
(1993)

CMC vs. Holt
Math Series

189 students entering
first grade:
experimental group
consisted of 23 stable
and 76 mobile
students; control
group consisted of 27
stable and 63 mobile
students

Nonequivalent
control group

CTBS and Metropolitan
Achievement Test (math
subtests included:
concepts/applications,
computation, and total math).
MAT was given to stable
students only (math subtests
included: computation,
concepts/applications,
problem solving, and total
math).

Stable and mobile DI groups received
scores similar to the stable control group
on the CTBS, while the mobile control
group scored significantly lower on the
concepts subtest. The DI group scored
significantly higher than the control group
on all areas of MAT (only administered to
stable students). Mobility had a negative
impact on all students. However, mobility
was more detrimental to the control
groups, as evidenced by CTBS scores.

Crawford & Snider
(2000)

CMC vs. Invitation
to Mathematics

15 fourth graders Pretest–posttest
control group

NAT: computation, concepts,
and problem solving; CBM
based on CMC; CBM based
on SF; and multiplication
facts

CMC group made greater gains than the
previous year on both CBMs and on
multiplication facts test. No significant
NAT posttest results noted.

McKenzie,
Marchand-Martella,
Martella, & Moore
(2004)

CMC Level K 16 preschool students
with and without
disabilities

One-group
pretest–posttest

Pre- and posttest measures
included the BDI and the
CMC Level A placement test.

The BDI Total Cognitive score showed a
combined effect size of .52 for students
with and without disabilities. Combined
scores on the CMC Level A placement test
increased from a mean of 4.31 on the
pretest to a mean of 7.69 on the posttest.

Snider & Crawford
(1996)

CMC vs. Invitation
to Mathematics

46 fourth graders Pretest–posttest
control group

NAT: computation,
concepts, and problem
solving; CBM based on CMC,
CBM based on SF; and
multiplication facts tests

CMC group scored higher than the SF
group on NAT computation subtest. CMC
group scored significantly higher than the
SF group on all three curriculum-based
tests.
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Table 7, continued
Program Comparison Summary Information for Investigations Involving DI Math

Reference Program/
comparison

Participants/
characteristics

Research
design

Dependent

variable(s)/measures

Results

Tarver & Jung
(1995)

CMC vs.
MTW/CGI

119 students
entering the
first grade

Nonequivalent
control group

CTBS mathematics concepts
and applications,
computation, and total math
(averaged from the two
subtests)

End of first grade CTBS results: CMC
group scored higher on computation and
total math but not on concepts and
applications. End of second grade CTBS
results: CMC group scored higher than the
control group on all posttest measures.

Vreeland et al.
(1994)

CMC vs.
Addison-Wesley
Mathematics

5 third-grade
classrooms
and 4 fifth-grade
classrooms

Nonequivalent
control group

ITBS Total Math (consisting
of three subtests:
computation, concepts, and
problem solving); KTEA—
C: calculation and
applications subtests.
(Applications subtest given to
only six students.) CBM
problem solving test based on
CMC and Addison-Wesley.

No significant change in percentile rank
for CMC groups on the ITBS. The
percentile rank change for the control
groups was -15%. CMC third graders made
gains on the KTEA—C, while no gains
were noted for CMC fifth graders. No
KTEA—C scores were available for the
control groups. Academically talented
third and fifth graders made better than
average gains on the KTEA—C.

Wellington (1994) CMC 16 first-grade
classrooms and 16
fourth-grade
classrooms

Nonequivalent
control group

Pretest: CMC placement
test; posttests: CBM based
on CMC and traditional
basal; district-designed
mastery test

One CMC first-grade group and one
control group showed statistically
significant improvement on the posttest.
Six CMC fourth-grade groups showed
statistically significant improvements on
the posttest. District-designed mastery
tests showed a decrease in the rate of
mastery as grade levels increased.



should be noted that multiple treatment inter-

ference is a threat to the external validity of

the study conducted by Sommers (1991). For

this reason, it is difficult to clearly establish a

causal relationship between DI programs and

increases in student achievement. 

Connecting Math Concepts. Seven studies were

found using CMC (see Table 7). First, Snider

and Crawford (1996) included 46 fourth

graders who were randomly assigned to two

general education classrooms. One teacher

used CMC, Level D; the other teacher used

Invitation to Mathematics (SF) by Scott

Foresman. CMC students scored higher than

the SF students on the Computation subtest

of the National Achievement Test (NAT). In

addition, CMC students scored significantly

higher on both the multiplication facts test

and on curriculum-based measures based on

CMC and SF.

Second, in a follow-up study by Crawford and

Snider (2000) both teachers used CMC. After

1 year of using CMC, the teacher who had

used SF had students who made greater gains

than the previous year on both the multiplica-

tion facts tests and on both curriculum-based

measures. No significant posttest differences

were noted on the NAT subtests or Total Test

scores. The authors cited several possible rea-

sons for the lack of significant pre- to posttest

gains. Some of these included (a) less than

optimal implementation of CMC, (b) lack of

alignment between the NAT Concepts and

Problem Solving subtests and either curricu-

lum, and (c) performance on norm-referenced

tests are more highly correlated to reading

comprehension scores than with computation

scores. Although the NAT results did not

reach significance, the positive results shown

by the remaining data prompted the dis-

trictwide implementation of CMC. 

Third, Tarver and Jung (1995) compared CMC
to a program that combined Math Their Way
(MTW) and Cognitively Guided Instruction

(CGI). One hundred nineteen students enter-

ing first grade were assigned to five class-

rooms. One experimental classroom used

CMC, while four control classrooms used

MTW/CGI. The study took place over 2 years.

At the end of first grade, students were

posttested using the Comprehensive Test of

Basic Skills—Mathematics (CTBS—M). CMC
students scored significantly higher than the

control group on Computation and Total Math

but not on the Concepts and Applications sub-

test. At the end of second grade, CMC stu-

dents scored higher than the control group on

all posttest measures as well as on an experi-

menter-constructed math attitudes survey.

Tarver and Jung noted positive effects for both

low and high performing students.

Fourth, Brent and DiObilda (1993) compared

the effects of DI curricula to those of tradi-

tional basal curricula in Camden, New Jersey.

At that time, Camden was considered to have

the highest percentage of children who lived

in poverty in the country. The mobility rate in

Camden was also higher than the national

average. For that reason, this study also exam-

ined the effects of each curriculum with stable

and mobile urban children. In an attempt to

improve their standardized test scores, school

officials had previously aligned their schools’

traditional basal programs to the

Comprehensive Test of Basic Skills—Form U,

Level D (CTBS). This study compared CMC
with the Holt Math Series. Dependent measures

included the CTBS and the Metropolitan

Achievement Test (MAT). CTBS total math

scores were similar among stable and mobile

DI groups as well as stable control groups.

Both stable and mobile DI groups scored

higher than the control groups on the CTBS

computation subtest, while the stable control

group scored higher on the concepts subtest.

On the MAT, administered to stable students

only, the DI group scored significantly higher

than the control group on all subtests. Overall,

mobility was found to have a negative impact

on student achievement in both the DI and
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the control groups. However, scores on the

CTBS indicated that mobility was more detri-

mental to the control groups. 

Fifth, McKenzie, Marchand-Martella, Martella,

and Moore (2004) examined the effects of

CMC Level K (prepublication copy; Engelmann

& Becker, 1995) on preschoolers with and

without developmental delays. Participants

included 16 preschoolers who attended school

5 days per week. Each preschooler completed

all 30 lessons contained in CMC Level K.

Students were pre- and posttested using the

Battelle Developmental Inventory (BDI) and a

curriculum-based placement test (CMC Level
A). Results showed an effect size of .61 for

preschoolers without developmental delays

and .54 for preschoolers with developmental

delays on the BDI. The placement test for

CMC Level A consists of 10 questions and was

given to all preschoolers. Scores for preschool-

ers without developmental delays increased

from a mean of 4.55 correct on the pretest to a

mean of 7.9 on the posttest; scores for

preschoolers with developmental delays

increased from a mean of 3.8 correct on the

pretest to a mean of 7.2 on the posttest.

Sixth, Vreeland et al. (1994) compared CMC
to the Addison-Wesley Mathematics program.

Participants included 5 third-grade class-

rooms and 4 fifth-grade classrooms. CMC
third and fifth graders scored higher than the

control group on CBM posttest measures,

based on CMC and Addison-Wesley. CMC third

graders showed little percentile rank changes

on the ITBS, while the third-grade control

group’s percentile rank change was -15%. No

percentile rank changes on the ITBS were

noted for CMC fifth graders. No ITBS scores

were available for fifth-grade control groups.

Results of the KTEA—C posttest revealed

that, at the end of third grade, CMC third

graders scored at or above the fourth-grade

level. No pre- to posttest gains were noted

for CMC fifth graders. No KTEA—C posttest

scores were available for the fifth-grade con-

trol groups. This study also examined the

effects of CMC with academically talented

students. For academically talented third

graders, KTEA—C posttest scores showed

mean grade equivalents of 5.7 on the math

calculation subtest and 6.1 on the math appli-

cations subtest. For academically talented

fifth graders, KTEA—C posttest scores

showed mean grade equivalents of 8.0 on the

math calculation subtest and 8.5 on the math

applications subtest. Overall, results were

positive enough to guide the school officials’

decision to use CMC in many of its first-

through sixth-grade classrooms. In a 1-year

follow-up study, 12 classrooms, grades first

through sixth, used CMC Levels A–E. Posttest

results indicated that CMC students experi-

enced gains, particularly in the higher levels

of the program. These results, combined with

positive teacher and parent reports, led to

the use of CMC in nearly all first- through

sixth-grade classrooms the following year. 

Finally, Wellington (1994) examined the effec-

tiveness of CMC for a period of 1 year in a

socio-economically and ethnologically diverse

school district. All eight of the district’s ele-

mentary schools participated in the study. One

first-grade classroom and 1 fourth-grade class-

room per school served as experimental

groups. First- and fourth-grade comparison

groups were also chosen from each school. The

pretest consisted of the CMC placement test,

while the posttest consisted of a teacher-

designed CBM based on CMC and the tradi-

tional basal used by the comparison groups.

Results showed statistically significant (>.05

level) differences among posttest scores for

two out of the eight first-grade groups: one in

favor of the CMC group and one in favor of the

comparison group. Fourth-grade results

showed statistically significant differences in

favor of six out of the eight CMC groups. The

author stated that the narrower scope of mate-

rial at the first-grade level as compared to the

breadth of concepts at the fourth-grade level

may account for the poor first-grade results. A
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district-designed mastery test was also admin-

istered to first through fifth graders at the end

of the school year. The results indicated that

the rate of mastery (defined as 70%) declined

at the higher grade levels. The results of this

test combined with posttest results compelled

the school district to implement CMC dis-

trictwide in first through fifth grades. 

All seven studies found positive results when

CMC was used. Three of the seven studies

(i.e., Brent & DiObilda, 1993; McKenzie et

al., 2004; Vreeland et al., 1994) examined

three varied populations. Brent and DiObilda

specifically found CMC to have a positive

effect on students from highly transient, low-

income, minority families in an urban commu-

nity. McKenzie et al. found CMC Level K to

have positive effects on a diverse group of

preschoolers that included those with and

without developmental delays. Finally,

Vreeland et al. found CMC to have positive

effects for both general education and gifted

students. It should also be noted that the

results from three of the seven studies (i.e.,

Crawford & Snider, 2000; Snider & Crawford,

1996; Wellington, 1994) led to the large-scale

adoption of CMC.

Summary. In all, 12 studies published since

1990 were found using DI math programs.

The majority (11 out of 12) of these found DI

math programs to be effective in improving

math skills in a variety of settings with a vari-

ety of students. One study (Young et al., 1990)

showed positive results for a DLT adaptation

based on DISTAR Arithmetic I rather than DIS-
TAR Arithmetic I in its original format. 

Future Directions for Research
Recent national and international assessments

have indicated the need to implement

research validated math curricula in our

schools. The NCTM responded to this need

by publishing its Principles and Standards for
School Mathematics (NCTM, 2000b). These

principles and standards are recommended to

influence the development and selection of

high quality math curricula. The research

included in this summary contributed positive

evidence for the use of the direct or explicit

approach to math instruction using these prin-

ciples and standards. However, a number of

implications for future research exist. 

Populations. Direct Instruction curricula are

often mistakenly associated for use primarily

with students with special needs (i.e., Adams

& Engelmann, 1996; Schieffer, Marchand-

Martella, Martella, Simonsen, & Waldron-

Soler, 2002). However, 7 out of 11 studies

(meta-analysis excluded; i.e., Brent &

DiObilda, 1993; Crawford & Snider, 2000;

Parsons et al., 2004; Snider & Crawford, 1996;

Sommers, 1991; Tarver & Jung, 1995;

Vreeland et al., 1994; Wellington, 1994) exam-

ined the effectiveness of DI math programs on

general education students. Two out of 11

studies (i.e., Glang et al., 1991; Young et al.,

1990) examined the effectiveness of DI math

programs with students with disabilities. One

study (McKenzie et al., 2004) examined the

effectiveness of DI math programs on a group

of students that included those with and with-

out developmental delays. In their DI meta-

analysis, Adams and Engelmann (1996)

calculated the average effect size per study

according to general education and special

education and found similar effect sizes for

both groups (.82 and .90, respectively).

Further, Vreeland et al. (1994) found grade-

level gains of approximately 2 years for two

groups of academically talented students using

CMC. These results indicate the need for

future examination of the effects of DI math

programs based on specific learner characteris-

tics (e.g., emotional and behavioral disabilities,

attention-deficit disorder, at-risk or incarcer-

ated youth, gifted learners).

Experimental analysis. In reviewing the research

on DI math programs, several threats to inter-

nal and external validity were found. Selection

is an issue in many of the studies due to a lack
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of random selection of participants (i.e., Brent

& DiObilda, 1993; Glang et al., 1991;

McKenzie et al., 2004; Parsons et al., 2004;

Sommers, 1991; Tarver & Jung, 1995;

Wellington, 1994; Young et al., 1990). Two

studies, (i.e., Crawford & Snider, 2000; Snider

& Crawford, 1996) attempted to assess group

equivalence and randomly assign participants.

Future studies should include random selec-

tion of participants from the target population,

random assignment to groups, and determina-

tion of group equivalence.

Dependent variables and measures. A wide variety

of norm-referenced tests were used to assess

math skills (e.g., applied math, basic facts,

computation, concepts, problem-solving). Six

of the 12 studies (i.e., Crawford & Snider,

2000; Glang et al., 1991; Snider & Crawford,

1996; Vreeland et al., 1994; Wellington, 1994;

Young et al., 1990) used CBM to determine

students’ level of math performance within

the local curriculum. Only 4 of the 12 studies

(i.e., Brent & DiObilda, 1993; Crawford &

Snider, 2000; Snider & Crawford, 1996;

Vreeland et al., 1994) reported using dis-

trictwide assessments as dependent meas-

ures. Our current standing on national and

international assessments indicates that

future research should include studies that

use district and statewide assessments as

dependent measures. 

Two studies (i.e., Sommers, 1991; Vreeland et

al., 1994) reported results as grade-level gains.

According to Cohen and Spenciner (1998) and

McLoughlin and Lewis (2001), such ordinal

scale data should be interpreted with caution.

Grade-level gains can be easily misinterpreted

because the intervals in grade equivalents do

not represent equal units of measurement.

Therefore, according to Cohen and Spenciner,

a grade-level gain of 1.0 is only representative

of students who are in the average range for

their grade (failing to account for individual

differences). Future researchers should refrain

from reporting ordinal scale data, such as age-

and grade-equivalents; means cannot be calcu-

lated and, at best, only pretest medians and

posttest medians (without mathematically

manipulating differences) should be noted (if

used at all).

Fidelity of implementation data. Inherent to the

design of DI programs is the use of scripted

formats and training opportunities. According

to Adams and Engelmann (1996), the rationale

for these scripted presentations is that if

teachers present an adequate set of examples

with clear, consistent wording, students will

learn the material with less confusion. The

delivery of these programs is a key factor in

their effectiveness. However, in many of the

studies investigated, verification of the inde-

pendent variable and experimenter effects are

concerns. Seven studies provided information

describing program implementation (i.e.,

Crawford & Snider, 2000; Glang et al., 1991;

McKenzie et al., 2004; Snider & Crawford,

1996; Tarver & Jung, 1995; Vreeland et al.,

1994; Young et al., 1990). Future studies

should monitor the implementation of DI cur-

ricula to limit experimenter effects and to

increase our confidence in the fidelity of pro-

gram implementation.

Implementation of DI math programs with other DI
curricula. Three of the 12 studies (i.e., Brent &

DiObilda, 1993; Glang et al., 1991; Sommers,

1991) investigated the use of DI math pro-

grams in conjunction with other DI programs

(e.g., Corrective Reading, Corrective Spelling
Through Morphographs, DISTAR Language I,

Expressive Writing, Reading Mastery, Reasoning and
Writing). Future studies should compare the

effects of the implementation of DI math pro-

grams alone as compared to the implementa-

tion of DI math programs in conjunction with

other DI curricula. On another hand, Sommers

(1991) supplemented DI math curricula with

other math curricula (i.e., Heath Mathematics),

thereby making it difficult to claim that

effects resulted from a single independent

variable. Multiple treatment interference
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should be avoided by either describing the

combined effects of multiple treatments or by

providing only one independent variable.

Calculation of effect sizes. Tests of statistical sig-

nificance are often relied upon to indicate the

effectiveness of a given variable. However, sta-

tistical significance data are used to provide

information about whether or not results are

likely due to chance. An all too common prac-

tice in research consumerism is the misinter-

pretation of these results. Statistical

significance does not necessarily mean educa-

tional significance. In our quest to find effec-

tive math curricula, educators must consider

effect size when reviewing research data.

According to Martella, Nelson, and Marchand-

Martella (1999), an effect size is a standard-

ized measure of the magnitude of the

differences between groups. In other words, it

measures how large the differences were and

can be used as an indication of educational sig-

nificance. Six of the 12 studies (i.e., Adams &

Engelmann, 1996; Brent & DiObilda, 1993;

McKenzie et al., 2004; Parsons et al., 2004;

Tarver & Jung, 1995; Wellington, 1994)

included measures of effect sizes. Future

research on DI math programs should include

measures of effect size to reflect the magni-

tude of change in educational programs. 

Maintenance and generalization data. Two of the

most important considerations in choosing

math curricula are maintenance and general-

ization. Long-term retention of mathematical

skills and strategies is critical not only for aca-

demic success, but also for future employment

success. Having students show generalized

skills in a wide-variety of subjects and real life

situations is equally critical. Three of the 12

studies (i.e., Vreeland et al., 1994; Wellington,

1994; Young et al., 1990) included some meas-

ure of maintenance and generalization. Future

DI math studies should include such data to

afford educators the opportunity to examine

this valuable information. 

Social validity. While a great deal of emphasis is

rightfully placed on quantitative measures,

social validity measures are an important

source of information regarding the social rele-

vance of research questions and results.

According to Wolf (1978), “a number of the

most important concepts of our culture are

subjective, perhaps even the most important”

(p. 210). Five of the 12 studies (i.e., Crawford

& Snider, 2000; Snider & Crawford, 1996;

Tarver & Jung, 1995; Vreeland et al., 1994;

Wellington, 1994) reported findings on stu-

dents’ and teachers’ attitudes and opinions

about DI math programs. Brent and DiObilda

(1993) provided socially relevant information

regarding the effectiveness of CMC with

mobile urban children. However, given the

need for effective math curricula in a variety of

social contexts, future research should include

measures of social validity.

Conclusion
The National Assessment of Educational Progress:
Mathematics Highlights, as reported by the

National Center for Education Statistics

(2001), shows that 4th- and 8th-grade math

scores were higher than in earlier national

assessments. However, the average math

scores for 12th graders declined. In addition,

math scores of American students rank in the

bottom half of the countries that participated

in the 1995 TIMMS Project (International

Study Center, 2001). Combined with the ever-

increasing technological complexity of future

employment, it is clear that our students are

in dire need of effective math instruction. 

In its Principles and Standards for School
Mathematics (2000b), NCTM developed five

overall curricular goals for ensuring student

success in mathematics. First, students should

learn to value mathematics. Experiencing suc-

cess in mathematics helps students to value

mathematics. DI math programs are designed

to allow students to experience success and to

know that they are experiencing success on a
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daily basis. Second, students should become

confident in their own mathematical abilities.

DI math programs are designed to develop

and maintain knowledge and application of

skills and concepts. As students encounter

and successfully solve a wide variety of mathe-

matical problems both in the classroom and in

the real world, confidence in their own abili-

ties increases. Third, students should become

mathematical problem solvers. DI math pro-

grams provide students with the necessary

tools to solve a broad spectrum of word prob-

lems and real life problems. Fourth, students

should learn to communicate mathematically.

DI math programs directly teach mathemati-

cal vocabulary and strategies thereby strength-

ening students’ abilities to communicate

effectively about mathematics. Finally, stu-

dents should learn to reason mathematically.

DI math programs teach students to discrimi-

nate between different types of problems at

gradually increasing levels of complexity. The

ability to discriminate between types of prob-

lems and required operations further develops

students’ mathematical reasoning ability. DI

math programs meet NCTM’s goals for stu-

dent success by providing students with the

confidence and skills to become effective

mathematical problem solvers in both class-

room and real life mathematics.

NCTM’s Principles and Standards for Improving
Mathematics (2000b) also provide educators

with six principles for improving math

instruction. As stated previously, DI math pro-

grams effectively meet these principles and

result in positive academic outcomes as shown

by a majority of studies included in this sum-

mary. We encourage public/private school edu-

cators and academicians to continue to

investigate the effects of DI math programs in

consideration of our recommendations. This

line of research will continue to ensure we are

using math curricula that best serve the needs

of all students.
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