Mc
 Graw Hill

Program Overview

Grades 9-12

MMATH:
 At A Glance

Teacher Resources 4
Student Resources 6
Designed to Meet Oklahoma Mathematics Standards 8
Learning Progression 9
Program Table of Contents 10
Lesson Model 16
Spark Curiosity 18
Sense-Making and Reasoning 19
Problem Solving and Application 20
Purposeful Practice 22
Positive Math Habits 24
Building Mathematical Language 26
Real-World Connections 27
Assessment 28
Targeted Remediation and Differentiation 30
Add $A L E K S^{\circledR}$ For Personalized Learning 32
Target Common Misconceptions 33
Efficiently Plan for Instruction 34
Expert-Led Professional Learning 36

Teacher Resources

Print Resources

Teacher Edition, 2-Volume

These spiral-bound Teacher Editions provide the essentials to plan and implement classroom instruction focused on Oklahoma Academic Standards for Mathematics.

Digital Resources

Teachers have access to an easy-to-use portal for planning, teaching, and validation of learning.
The Digital Teacher Center experience includes:

- Teacher Edition eBook
- Language Development Handbook, Teacher Edition
- Interactive Lesson Presentations
- Program Quick Start Course
- Expert Insight Videos
- Auto-Scored, Customizable Online Assessments
- Differentiated Resources
- Dynamic Digital Practice
- Auto-scored, Customizable Interactive Practice
- Spiral Review
- Web Sketchpad®
- eToolkit (Virtual Manipulative Suite)
- Personal Tutor Lesson Support
- Practice and Assessment Word documents
- $A L E K S^{\circledR}$ *
- Teacher and Administrator Reporting

Digital Integration

The McGraw Hill Open Learning Platform currently integrates with the following Federated Standards: SAML 2.0 IDP, LTI 1.0, and Clever. Integration is possible with most learning management systems that support these standards, including but not limited to:

- Canvas
- Schoology
- Google Classroom
- Blackboard

Student Resources

Print Resources

Student Edition, Hardcover

These hardcover Student Editions offer students the opportunity to engage in learning through the use of notetaking, problem-solving, discourse, and reflection.

McGraw Hill ACT ${ }^{\oplus}$ \& SAT Math Practice Books

Constructed to provide students practice leading up to either the ACT^{\oplus} or the SAT ${ }^{\ominus}$ tests, these practice books cover the concepts and question types found on each test.

Digital Resources

Students have access to a robust set of engaging digital tools and interactive learning aids in their Digital Student Center, including:

- Interactive Student Edition
- Student Edition eBook
- Language Development Handbook, Student Edition
- Dynamic Digital Practice
- Interactive Digital Practice
- Web Sketchpad ${ }^{\circledR}$
- eToolkit (Virtual Manipulative Suite)
- eGlossary
- Multilingual eGlossary
- Personal Tutor Video Lesson Support
- $\operatorname{ALEKS}{ }^{\circledR}$ *

Designed to Meet Oklahoma Mathematics Standards

Oklahoma Reveal Math is designed to ensure teachers have the tools to deliver the high-quality instruction needed for student success in math class and beyond.

1. Lesson Goal and Contents

The focused goal of the lesson and the segments within are outlined. Note the icons recommending class, pair, and individual student activities.

2. Differentiated Resources

At-a-glance resources for lesson differentiation make planning easy.
3. Pacing

Lesson pacing for each activity is represented for 45 - or 90- minute periods.

4. Oklahoma Academic Standards for Mathematics

Each Lesson Opener specifies the Domain, Major Cluster(s), Content, and Standards for Mathematical Practice.
5. Balanced Structure

The tasks, problems, and exercises reflect a balance of the three pillars of rigor: Conceptual Understanding, Procedural Skill \& Fluency, and Application.
6. Mathematical Background

Each lesson includes a point-of-use explanation of the mathematical context for teachers.

Learning Progression

Oklahoma Reveal Math ensures learning progression of mathematical content across all grades and within each grade from kindergarten to Algebra 2. Module-level and lesson-level progressions help strengthen each student's learning journey.

Module-Level Learning Progression

helps teachers understand previously learned concepts and skills, the focus of the upcoming module, and follow-up concepts and skills.

Lesson-Level Learning Progression

guidance provides a more granular analysis of the learning progression from lesson to lesson within the module.

Program Table of Contents

ALCEBRA 1

Module 1 Expressions

Lesson 1: Numerical Expressions
Lesson 2: Algebraic Expressions
Lesson 3: Properties of Real Numbers
Expand 1-3: Operations with Rational Numbers
Lesson 4: Distributive Property
Lesson 5: Expressions Involving Absolute Value
Lesson 6: Descriptive Modeling and Accuracy

Module 2 Equations in One Variable

Lesson 1: Writing and Interpreting Equations
Lesson 2: Solving One-Step Equations
Lesson 3: Solving Multi-Step Equations
Lesson 4: Solving Equations with the Variable on Each Side
Lesson 5: Solving Equations Involving Absolute Value

Lesson 6: Solving Proportions
Lesson 7: Using Formulas
Module 3 Relations and Functions
Lesson 1: Representing Relations
Lesson 2: Functions
Lesson 3: Linearity and Continuity of Graphs
Lesson 4: Intercepts of Graphs
Lesson 5: Shapes of Graphs
Lesson 6: Sketching Graphs and Comparing Functions

Module 4 Linear and Nonlinear Functions
Lesson 1: Graphing Linear Functions
Lesson 2: Rate of Change and Slope
Lesson 3: Slope-Intercept Form
Expand 4-3: Linear Growth Patterns
Lesson 4: Transformations of Linear Functions
Lesson 5: Piecewise and Step Functions
Lesson 6: Absolute Value Functions

Module 5 Creating Linear Equations

Lesson 1: Writing Equations in Slope-Intercept Form
Lesson 2: Writing Equations in Standard and PointSlope Forms
Lesson 3: Scatter Plots and Lines of Fit
Lesson 4: Linear Regression
Lesson 5: Inverses of Linear Functions
Module 6 Linear Inequalities
Lesson 1: Solving One-Step Inequalities
Lesson 2: Solving Multi-Step Inequalities
Lesson 3: Solving Compound Inequalities
Lesson 4: Solving Absolute Value Inequalities
Lesson 5: Graphing Inequalities in Two Variables

Module 7 Systems of Linear Equations and Inequalities

Lesson 1: Graphing Systems of Equations
Lesson 2: Substitution
Lesson 3: Elimination Using Addition and Subtraction
Lesson 4: Elimination Using Multiplication
Lesson 5: Systems of Inequalities

Module 8 Exponents and Roots

Lesson 1: Multiplication Properties of Exponents
Lesson 2: Division Properties of Exponents
Lesson 3: Negative Exponents
Lesson 4: Rational Exponents
Lesson 5: Simplifying Radical Expressions
Lesson 6: Operations with Radical Expressions
Expand 8-6: Sums and Products of Rational and Irrational Numbers
Lesson 7: Exponential Equations

Module 9 Exponential Functions

Lesson 1: Exponential Functions
Lesson 2: Transformations of Exponential Functions
Lesson 3: Writing Exponential Functions
Lesson 4: Transforming Exponential Expressions
Lesson 5: Geometric Sequences
Lesson 6: Recursive Formulas

Module 10 Polynomials

Lesson 1: Adding and Subtracting Polynomials
Lesson 2: Multiplying Polynomials by Monomials
Lesson 3: Multiplying Polynomials
Lesson 4: Special Products
Lesson 5: Using the Distributive Property
Expand 10-5: Proving the Elimination Method
Lesson 6: Factoring Quadratic Trinomials
Lesson 7: Factoring Special Products

Module 11 Quadratic Functions

Lesson 1: Graphing Quadratic Functions
Lesson 2: Transformations of Quadratic Functions
Lesson 3: Solving Quadratic Equations by Graphing
Lesson 4: Solving Quadratic Equations by Factoring
Lesson 5: Solving Quadratic Equations by Completing the Square
Lesson 6: Solving Quadratic Equations by Using the Quadratic Formula

Lesson 7: Solving Systems of Linear and Quadratic Equations
Lesson 8: Modeling and Curve Fitting
Expand 11-8: Exponential Growth Patterns
Lesson 9: Combining Functions

Module 12 Statistics

Lesson 1: Measures of Center
Lesson 2: Representing Data
Lesson 3: Using Data
Lesson 4: Measures of Spread
Lesson 5: Distributions of Data
Lesson 6: Comparing Sets of Data
Lesson 7: Summarizing Categorical Data

Module 13 Probability

Lesson 1: Sample Spaces
Lesson 2: Probability and Counting
Lesson 3: Geometric Probability
Expand 13-3: Making Fair Decisions
Lesson 4: Probability with Permutations and Combinations
Lesson 5: Probability and the Multiplication Rule
Lesson 6: Probability and the Addition Rule
Lesson 7: Conditional Probability
Lesson 8: Two-Way Frequency Tables

Program Table of Contents

GEOMETRY

Module 1 Tools of Geometry

Lesson 1: The Geometric System
Lesson 2: Points, Lines, and Planes
Lesson 3: Line Segments
Lesson 4: Distance
Lesson 5: Locating Points on a Number Line
Lesson 6: Locating Points on a Coordinate Plane
Lesson 7: Midpoints and Bisectors
Module 2 Angles and Geometric Figures
Lesson 1: Angles and Congruence
Lesson 2: Angle Relationship
Lesson 3: Two-Dimensional Figures
Lesson 4: Transformations in the Plane
Lesson 5: Three-Dimensional Figures
Lesson 6: Two-Dimensional Representations of Three-Dimensional Figures
Lesson 7: Precision and Accuracy
Lesson 8: Representing Measurements

Module 3 Logical Arguments and Line Relationship

Lesson 1: Conjectures and Counterexamples
Lesson 2: Statements, Conditionals, and Biconditionals

Lesson 3: Deductive Reasoning
Lesson 4: Writing Proofs
Lesson 5: Proving Segment Relationship
Lesson 6: Proving Angle Relationship
Lesson 7: Parallel Lines and Transversals
Lesson 8: Slope and Equations of Lines
Lesson 9: Proving Lines Parallel
Lesson 10: Perpendiculars and Distance
Module 4 Transformations and Symmetry
Lesson 1: ReflectionsLesson 2: Translations
Lesson 3: Rotations
Lesson 4: Compositions of Transformations
Lesson 5: TessellationsModule 5 Triangles and Congruence
Lesson 1: Angles of Triangles
Lesson 2: Congruent Triangles
Lesson 3: Proving Triangles Congruent: SSS, SAS
Lesson 4: Proving Triangles Congruent: ASA, AAS
Lesson 5: Proving Right Triangles Congruent
Lesson 6: Isosceles and Equilateral Triangles
Lesson 7: Triangles and Coordinate Proof
Module 6 Relationship in Triangles
Lesson 1: Perpendicular Bisectors
Lesson 2: Angle Bisectors
Lesson 3: Medians and Altitudes of Triangles
Lesson 4: Inequalities in One Triangle
Lesson 5: Indirect Proof
Lesson 6: The Triangle Inequality
Lesson 7: Inequalities in Two Triangles
Module 7 Quadrilaterals
Lesson 1: Angles of Polygons
Lesson 2: Parallelograms
Lesson 3: Tests for Parallelograms
Lesson 4: Rectangles
Lesson 5: Rhombi and Squares

Module 8 Similarity

Lesson 1: Dilations
Lesson 2: Similar Polygons
Lesson 3: Similar Triangles: AA Similarity
Lesson 4: Similar Triangles: SSS and SAS Similarity
Expand 8-4: Proving the Slope Criteria
Lesson 5: Triangle Proportionality
Lesson 6: Parts of Similar Triangles

Module 9 Right Triangles and Trigonometry

Lesson 1: Geometric Mean
Lesson 2: Pythagorean Theorem and its Converse
Lesson 3: Coordinates in Space
Lesson 4: Special Right Triangles
Lesson 5: Trigonometry
Lesson 6: Applying Trigonometry
Lesson 7: The Law of Sines
Lesson 8: The Law of Cosines

Module 10 Circles

Lesson 1: Circles and Circumference
Lesson 2: Measuring Angles and Arcs
Lesson 3: Arcs and Chords
Lesson 4: Inscribed Angles
Lesson 5: Tangents
Lesson 6: Tangents, Secants, and Angle Measures
Lesson 7: Equations of Circles
Lesson 8: Equations of Parabolas

Module 11 Measurement

Lesson 1: Areas of Quadrilaterals
Lesson 2: Areas of Regular Polygons
Lesson 3: Areas of Circles and Sectors
Lesson 4: Surface Area
Lesson 5: Cross Sections and Solids of Revolution
Lesson 6: Volumes of Prisms and Pyramids
Lesson 7: Volumes of Cylinders, Cones, and Spheres
Lesson 8: Applying Similarity to Solid Figures
Lesson 9: Density

Program Table of Contents

ALGEBRA 2

Module 1 Relations and Functions

Lesson 1: Functions and Continuity
Lesson 2: Linearity, Intercepts, and Symmetry
Lesson 3: Extrema and End Behavior
Lesson 4: Sketching Graphs and Comparing Functions
Lesson 5: Graphing Linear Functions and Inequalities
Lesson 6: Special Functions
Lesson 7: Transformations of Functions

Module 2 Linear Equations, Inequalities and Systems

Lesson 1: Solving Linear Equations and Inequalities
Lesson 2: Solving Absolute Value Equations and Inequalities
Lesson 3: Equations of Linear Functions
Lesson 4: Solving Systems of Equations Graphically
Lesson 5: Solving Systems of Equations Algebraically
Lesson 6: Solving Systems of Inequalities
Lesson 7: Optimization with Linear Programming
Lesson 8: Systems of Equations in Three Variables
Lesson 9: Solving Absolute Value Equations and Inequalities by Graphing

Lesson 10: Arithmetic Sequences
Extend 2-10: Arithmetic Sequences and Series
Lesson 11: Correlation and Causation

Module 3 Quadratic Functions

Lesson 1: Graphing Quadratic Functions
Lesson 2: Solving Quadratic Equations by Graphing
Lesson 3: Complex Numbers
Extend 3-3: Imaginary Numbers Raised to a Power
Lesson 4: Solving Quadratic Equations by Factoring
Lesson 5: Solving Quadratic Equations by Completing the Square
Lesson 6: Using the Quadratic Formula and the Discriminant
Lesson 7: Quadratic Inequalities
Lesson 8: Solving Linear-Nonlinear Systems

Module 4 Polynomials and Polynomial Functions

Lesson 1: Polynomial Functions
Lesson 2: Analyzing Graphs of Polynomial Functions
Lesson 3: Operations with Polynomials
Lesson 4: Dividing Polynomials
Lesson 5: Powers of Binomials
Module 5 Polynomial Equations
Lesson 1: Solving Polynomial Equations by Graphing
Lesson 2: Solving Polynomial Equations Algebraically
Lesson 3: Proving Polynomial Identities
Lesson 4: The Remainder and Factor Theorems
Lesson 5: Roots and Zeros
Module 6 Inverses and Radical Functions
Lesson 1: Operations with Functions
Lesson 2: Inverse Relations and Functions
Lesson 3: nth Roots and Rational Exponents
Lesson 4: Graphing Radical Functions
Lesson 5: Operations with Radical Expressions
Lesson 6: Solving Radical Equations

Module 7 Exponential Functions

Lesson 1: Graphing Exponential Functions
Lesson 2: Solving Exponential Equations and Inequalities
Lesson 3: Special Exponential Functions
Lesson 4: Geometric Sequences and Series Expand 7-4: Sum of a Finite Geometric Series Lesson 5: Modeling Data

Module 8 Logarithmic Functions

Lesson 1: Logarithms and Logarithmic Functions
Lesson 2: Properties of Logarithms
Lesson 3: Common Logarithms
Lesson 4: Natural Logarithms
Lesson 5: Using Exponential and Logarithmic Functions

Module 9 Rational Functions

Lesson 1: Multiplying and Dividing Rational Expressions

Lesson 2: Adding and Subtracting Rational Expressions
Lesson 3: Graphing Reciprocal Functions
Lesson 4: Graphing Rational Functions
Lesson 5: Variation
Lesson 6: Solving Rational Equations and Inequalities

Module 10 Inferential Statistics
Lesson 1: Random Sampling
Lesson 2: Using Statistical Experiments
Lesson 3: Analyzing Population Data
Lesson 4: Normal Distributions
Lesson 5: Estimating Populations Parameters

Module 11 Trigonometric Functions

Lesson 1: Angles and Angle Measure
Lesson 2: Trigonometric Functions of General Angles
Lesson 3: Circular and Periodic Functions
Lesson 4: Graphing Sine and Cosine Functions
Lesson 5: Graphing Other Trigonometric Functions
Lesson 6: Translations of Trigonometric Graphs
Lesson 7: Inverse Trigonometric Functions

Module 12 Trigonometric Identities

 and EquationsLesson 1: Trigonometric Identities
Lesson 2: Verifying Trigonometric Identities
Lesson 3: Sum and Difference Identities
Lesson 4: Double-Angle and Half-Angle Identities
Lesson 5: Solving Trigonometric Equations

Module 13 Systems of Equations and Matrices

Lesson 1: Representing Data Using Matrices

Lesson 2: Operations with Matrices
Explore 13-2: Scalar Multiplication
Lesson 3: Multiplying Matrices
Explore 13-3: Geometric Transformations by Using Matrix Multiplication
Math Probes: Matrices and Matrix Operations
Lesson 4: Solving Systems of Equations Using Cramer's Rule
Explore 13-4: Using Determinants
Lesson 5: Solving Systems of Equations Using Inverse Matrices
Explore 13-5: Solving Systems of Equations by Using Technology

Lesson Model Overview

The Oklahoma Reveal Math lesson is organized into a three-part instructional model supported by differentiation throughout. Each lesson includes opportunities for flexibility using both print and digital resources.

Launch

Teachers use the Warm-Up at the start of the lesson for a brief review of prerequisite skills before leading into Launch the Lesson, designed as a real-world problem to interest students and introduce them to questions they can answer by the end of the lesson.

Explore \& Develop

Teachers introduce the Explore activity and have the option to break students into pairs or small groups to work together on this exploratory mathematical task to build a shared understanding. This is followed by a whole group share out and Learn activity to formalize student understanding.

Students continue to take ownership of learning by working through Examples and Talk About It! prompts to encourage math discourse. Checks after several Examples provide a quick formative assessment moment for teachers to evaluate students' understanding.

Reflect \& Practice

At the conclusion of the lesson, the teacher displays the Exit Ticket to evaluate student understanding.

The Practice, Extra Practice, and/or Spiral Review assignments follow the Differentiate phase and conclude the lesson.

Differentiate

Using the data from Checks and the Exit Ticket, teachers can choose from a variety of Differentiated Resources to support student learning needs.

AL Approaching Level
Resources designed to provide prerequisite skill support.

OL On Level
Resources for on-level
instructional needs.
BL Beyond Level
Resources to extend lesson concepts.

Spark Curiosity

Each module includes an Ignite! activity designed to:

- Spark students' interest and curiosity.
- Provide multiple entry points.
- Motivate students to persevere through problem-solving challenges.

NAME \qquad DATE \qquad PERIOD
|lCNiTE! Mathematical Modeling Who Doesn't Use the Internet?

The table shows the results of surveys on Internet non-usage taken every few years since 2000. Study the table.

Internet Non-Usage Year Percent of Respondents			
200	48		
2005	32		
2010	24		
2015	15		
2019	10		
Source: Pew Research Center			

What do you notice?	What questions can you ask?

Talk About lt! Share your observations and questions with a partner.
You will work with your partner to answer this question: When will almost everyone use the Internet?

Analyze the Problem

1. What assumptions are you making? Why are you making these assumptions?
2. What constraints, if any, need to be considered? How might they affect the solution?

Formulate the Model

3. What type of model best represents the data set?
4. What variables will you use? What do they represent and how are they related?
\qquad ~1~ \qquad

Sense-Making and Reasoning

Online Explore activities focus on an Inquiry Question and place a unique emphasis on student discovery, exploration, sense-making, and reasoning, rather than focusing solely on the correct answer.

"We have a huge opportunity today in helping students become such strong, fluid, and flexible thinkers that they are able to use mathematics and see opportunities to use it in places we may not even imagine."
-Cathy Seeley, Expert Advisor

Problem Solving and Application

Oklahoma Reveal Math provides a foundation for students to take increased ownership of learning to become effective problem solvers and critical thinkers.

Demonstrating Perseverance

Rich multi-step application exercises and higher-order thinking questions encourage productive struggle.

Mathematical Modeling Tasks

Ignite! Mathematical Modeling activities call for students to construct and develop a model to analyze and present a solution to a real-world scenario. Students then share and discuss their findings with the entire class.

Tools to Support Visualization and Modeling

As math increases in complexity, students will benefit from tools that allow them to represent mathematics in different ways. Oklahoma Reveal Math includes Web Sketchpad ${ }^{\circledR}$ at the point of use within the lessons.

An eToolkit accessible from inside the Digital Student Center enables students to learn through dynamic mathematical models.

Pause and Reflect

Reflection helps drive accountability and gives students the opportunity to think and write about their learning. Students are regularly asked during Pause and Reflect to explain what they have learned.

Pause and Reflect

Did you struggle with anything in this lesson? If so, how did you deal with it?

Notetaking for Understanding

The Student Edition is organized with Cornell-inspired margins for students to document notes, draw figures, list key takeaways, or outline strategies.

Purposeful Practice

Practice in Oklahoma Reveal Math provides students with ample opportunity to demonstrate conceptual understanding and procedural fluency. Teachers may choose to fully customize pre-built practice sets and questions.

Practice assignments can be completed in the print Student Edition, using a printable worksheet, or within the Digital Student Center.

Extra Practice assignments contain additional questions for each lesson on a printable worksheet or within the Digital Student Center.

Benefits of Digital Practice

- Multiple Attempts
- Embedded Student Learning Aids
- Tech-Enhanced Question Types
- Dynamic Question Functionality
- Auto-Scoring
- Thousands of Practice Bank Questions

Dynamic Practice

Questions that change value for each student and each attempt are found in Extra Practice, Spiral Review, and Dynamic Module Practice sets.

LearnSmart ${ }^{\bullet}$

After several modules, assign students personalized, adaptive practice focused on learning objectives.

Module Test Practice

Assessment practice concludes the module in the student edition for Oklahoma Reveal Algebra 1 and Oklahoma Reveal Geometry.

Spiral Review

End-of-lesson practice on concepts presented in prior lessons.

ACT ${ }^{\circledR}$ and SAT ${ }^{\circledR}$ Practice

Oklahoma Reveal Algebra 2 includes student-directed practice support with a McGraw Hill ACT Practice Book or McGraw Hill SAT Practice Book option. Question sets are also available for digital administration.

Positive Math Habits

Oklahoma Reveal Math is infused with research-based best practices designed for teachers to establish a culture of positivity and success where students find purpose in effort and learning opportunities through questions, errors, and discourse.

Mindset Matters

Teachers are prompted at the beginning of every module with Mindset Matters to implement strategies for encouraging a growth mindset during upcoming lessons.

Purposeful Tasks to Deepen Understanding

Oklahoma Reveal Math tasks are designed to provide students structure to explore, uncover ideas, justify thinking, and ask each other questions to deepen understanding.

Encourage Collaboration:

Provide opportunities for students to collaborate using the Ignite! activity or within the lesson using Explore and Learn activities, which supply a framework to solve, discuss, and evaluate problems.

Share and Narrow

Have students respond to the Talk About It! question with a partner.
As a class, narrow down to one question that they will work with their partner to answer for the duration of the activity. Have them record the question. You may wish to guide them to the target question, which targets the common misconception shown.
Target Question How many triangles can you find?
Common Misconceptions Some students will approach this problem by listing all of the potential triangles they can find. Other students will try to find a pattern in the triangles. Both methods should help them find all 42 triangles. Students may not notice that some of the triangles are being counted twice. However, working with a partner may help them identify that potential pitfall.

Focus on Inquiry:

Online Explore activities begin with an openended Inquiry Question to encourage deep thinking and reasoning. Students document their findings either online or on an Explore Recording Sheet.

Talk About It! prompts ask students to explain their reasoning and discuss their thinking.
(8) Talk About It

Ellie believes that she can solve for $m \angle 3$ before solving for $m \angle 1$. What useful questions can you ask to understand her approach?

Building Mathematical Language

Oklahoma Reveal Math was developed around the belief that mathematics is about communication: listening, speaking, reading, and writing. All students will benefit from support designed to develop and promote the use of mathematical language.

MLR

Math Language Routines

Occur in every lesson to promote the use of mathematical language.

Language Development Handbook Pages

Graphic organizers, tools, and tips to build students' academic and math vocabulary within each lesson.

English Language Learners

Embedded in each lesson and based on combined WIDA proficiency levels to help students understand math vocabulary, ideas, and concepts in context.

Language of Math

Promotes the development of key vocabulary terms that support how students talk and think about math in the context of each lesson.

Language Development Handbook

PDF

- Spanish Videos

- Audio to Improve Listening Comprehension Skills
- English/Spanish Glossary
- Multilingual eGlossary
- ALEKS ${ }^{\circ}$ Bilingual Courses in Spanish

[^0]
Real-World Connections

Oklahoma Reveal Math is about students recognizing that math is everywhere in the world around them and that the world offers them an infinite number of problem-solving opportunities.

Relatable Scenarios

A Launch the Module video highlighting an authentic, recognizable scenario engages students in the upcoming lesson topics.

Relevant Connections

A Launch the Lesson real-world situation related to the mathematics in the upcoming lesson helps students make connections.

Θ Example

Lessons also contain real-world Examples and Apply Examples, highlighted with a globe icon, designed to provide relevant contexts in which students can see themselves.

Multicultural Contributions

To provide students with diverse perspectives, Math History Minutes highlight the contributions of leading mathematicians, past and present, from all over the world.

Assessments

Oklahoma Reveal Math offers a comprehensive set of assessments, including diagnostic, formative, and summative options for teachers to effectively evaluate what students know and where they need support.

Print and Digital Formats

All Oklahoma Reveal Math assessments are available for either print or digital administration. Print assessments can be found in the Digital Teacher Center as editable Word documents.

Data to Drive Instructional Insights

Actionable data is a click away in the Digital Teacher Center with the Oklahoma Reveal Math Reporting Dashboard.

Activity Performance Report
Teachers can review useful data points for class activities, including item analysis by student and class, as well as overall performance.

Oklahoma Standards Report
Teachers can access information on class performance by Oklahoma Mathematics Standards, including a cumulative score by class and student.

MAP Growth* Report

Teachers can view students' MAP ${ }^{\circledR}$ Growth ${ }^{\text {Tm }}$ RIT scores and progress throughout the year.

Integrate MAP Growth Data*

MAP Growth, the market's most trusted and accurate interim assessment, integrates its data with Oklahoma Reveal Math on the Open Learning Platform.

MAP Growth data can save teachers time by identifying students who may need additional support to access grade-level content. Auto-Grouping and Recommended Targeted Skill Paths provide support and review of critical prerequisite skills.

* For districts that use Map Growth Data

Targeted Remediation and Differentiation

Identify Unfinished Learning

Before beginning the module, assign the Module Diagnostic to evaluate student readiness for the module content.

Targeted Remediation

Review student scores to evaluate and determine the appropriate resources to assign.

ALEKS

Using adaptive questioning, ALEKS* quickly and accurately determines what topics a student knows and is ready to learn next.

Review Activities

Each Review Learn and Review Example provides students with a key concept overview and several examples to meet their prerequisite skill needs.

Enrich Learning with Differentiated Resources

During instruction, after reviewing formative assessment sources and data, choose from a variety of differentiation options to meet the needs of your students.

Take Another Look On-Level Reteach

 Mini-Lessons*Supplement core instruction with built-in reteach support, including Model, Interactive Practice, and Data Check resources.

* Oklahoma Reveal Algebra 1

Extension Activities

Digitally assign to students who are ready for a challenge.

Quick Review Math Handbook

This resource provides additional instruction and practice for prerequisite skills.

```
2.4 Parallel Lines and Transversal
Relationships Between Lines and Planes
When two lines lie in the same plane and do not intersect,
they are parallel. Lines that do not intersect and are not
they are parallel. Lines that do not intersect and are not
coplanar are skew lines.
In the figure, \(l\) is parallel
In the figure, \(I\) is
write \(\overline{P Q} \| \frac{1}{R S}\)
```

```
& 
```

\&
Similarly, if two planes do not intersect, they are parallel
planes.
EXAMPLE Identify Parallel and Skew Relationships
Refer to the figure below to identify each of the
Refer to the
C
a. all planes parallel to plane AB
2. plane EFH
b. all segments parallel to }\overline{CG
\F,}\overline{DH}\mathrm{ and }\overline{AB
c. all segments skew to }\overline{EH
82 HotTopic}

```

\section*{Video Library}

Students have access to help videos, Foldable support videos, and Personal Tutor concept videos for reference. Teachers may choose to assign them for additional student support.

\section*{Mrs. Dawson}

Determine whether each equation is a linear equation. Write yes or no. II
yes, write the equation in standard form.
yes, write the equation in standard form.
yes
standard form
\(A x+B y=C\)
\(2+5 y=\)

\section*{Add ALEKS* for Personalized Learning}

Oklahoma Reveal Math and ALEKS provide students the added advantage of a personalized learning pathway continuously adapting to them.

- ALEKS can be used effectively for all students, targeting the exact topics each is most ready to learn. This approach minimizes frustration, accelerates learning momentum, and builds confidence.
- Teachers can create ALEKS assignments directly connected to Oklahoma Reveal Math, so students work on lesson-level content with prerequisite topic support.
- For students who need more challenge, ALEKS provides additional extension opportunities and allows students to progress at their own pace.
- ALEKS course content spans from Grade 3 to Precalculus for infinite options for course content support.
- An automatic cycle of assessment in ALEKS ensures each student's learning pathway is continually refreshed.
- ALEKS reports provide visibility at a granular level to measure progress by student, topic, or Oklahoma Mathematics Standards.

\section*{Target Common Misconceptions}

Math Probes, written by Cheryl Tobey, are designed to uncover students' misconceptions within every module. These probes, placed at the point of use, allow teachers to make sound instructional choices targeting specific mathematics concepts.


Each Math Probe features three to four items that are split into two parts:
1. Part One assesses students' understanding of concepts.
2. Part Two asks students to share their thinking about the concepts.


Written by
Contributing Author,
Cheryl Tobey

\section*{Take Action}

The teacher support materials that accompany the Math Probes are designed around a three-part ACT cycle:
- Analyze the Probe
- Collect and Assess Student Work
- Take Action. Provided remedies help teachers correct misconceptions quickly and efficiently.
\(\Delta\) Analyze the Probe
Review the probe prior to assigning it to your students.
In this probe, students determine why the equation for their best-fit line differs from the equation generated by their graphing calculator and explain their choices.
Targeted Concepts Understand how scale is used to determine and analyze the line of best fit.
Targeted Misconceptions
- Students may not realize of best fit. Students may not under:
when the \(x\)-value is equar to 0 , not un - Students may rely on what a graph "lc model as the line of best fit, generate Use the Probe after Lesson 5-3.

\(T\) Tmam
After the Probe Design a plan to address any possible misconceptions. You may wishto assign the following resources.
- D ALEKS Scatter Plots and Lines of Best fit Lesson 5-3, Learn, Example 2 these misconceptions.

\section*{Efficiently Plan for Instruction}

\section*{See All Lesson Resources at Once}

Teachers can view all the lesson resources and plan from organized lesson landing pages within the Digital Teacher Center that align with their print Teacher Edition layout. Lessons can be added to the calendar and easily accessed from the Teacher Dashboard on the day of learning.


\section*{Plan to Facilitate Productive Learning}

Each research-based routine of NCTM's Effective Teaching Practices can be found in the structure of the Oklahoma Reveal Math Teacher Edition and Digital Teacher Center.

These eight practices include:
- ESTABLISH mathematical goals to focus learning.
- IMPLEMENT tasks that promote reasoning and problem-solving.
- USE AND CONNECT mathematical representations.
- FACILITATE meaningful mathematical discourse.
- POSE purposeful questions.
- BUILD procedural fluency from conceptual understanding.
- SUPPORT productive struggle in learning mathematics.
- ELICIT AND USE evidence of student thinking.

\section*{Access and Customize Lesson Presentations}

\section*{Interactive Lesson Presentation}

Teachers have a ready-made Interactive Lesson Presentation with embedded eTools, videos, and animations. This presentation is easily customizable: hide resources or upload teacher files, links, and slides.

Scatter Plots
Bivariate data consists of pairs of values. A scatter plot is a graph of bivariate data that consists of ordered pairs on a coordinate plane. Using a scatter plot can help you see the trend, or general pattern, in the data. Trends can represent coordinate plane. Using a scatter plot can help you see the trend, or general pattern, in the data. Trends can represent
linear or nonlinear associations in the data. In this lesson, we will examine linear associations. Trends can be described linear or nonlinear associations in the
as positive or negative correlations.

Tap on each card to learn about correlation.


Notice that in the graphics for positive and negative correlations, many of the points from clusters of points that slope upward or downward. Points outside of clusters are outliers.

\section*{Expert-Led Professional Development}

Teachers and administrators have access to a comprehensive set of self-paced digital resources available within the Digital Teacher Center for each grade.


\section*{Quick Start}

Teachers can get up to speed quickly with the Oklahoma Reveal Math resources and curriculum overview.

\section*{Digital Walkthrough}

Digital platform guidance from a teacher view and a student view.

\section*{Instructional Videos}

Oklahoma Reveal Math authors and experts present guidance and tips on the program.
Cathy Seeley:
- Productive Struggle and Discourse
- Fostering a Positive Math Mindset

Dr. Raj Shah:
- Ignite! Activities

\section*{Cheryl Tobey:}
- Math Probes


\section*{Notes}

\section*{Notes}

\section*{Oklahoma Reveal MATH}

Reveal the Full Potential in Every Student
Learn more at mheonline.com/oklahoma```


[^0]:    *with Oklahoma Reveal Math and ALEKS bundle

