

College- and Career-Readiness Standards for Science Chemistry

© 2017

	STANDARDS	PAGE REFERENCES
	CHE.1 Mathematical and Computational Analysis Conceptual Understanding: Mathematical and computational analysis is a key component of scientific investigation and prediction of outcomes. These components create a more student- centered classroom.	
	CHE.1 Students will use mathematical and	computational analysis to evaluate problems.
and si	1.1 Use dimensional analysis (factor/label) ignificant figures to convert units and solve iometric problems.	Student Edition: <i>Example Problems</i> 375, 376, 377 <i>Math Handbook</i> 956-959 <i>MiniLAB</i> 378

STANDARDS	PAGE REFERENCES
Continued from previous cell CHE.1.1 Use dimensional analysis (factor/label) and significant figures to convert units and solve stoichiometric problems.	Continued from previous cell Problem-Solving Strategy 374 Practice Problems 375, 376, 377 Teacher Wraparound Edition: CJ 275; CU 377; ICE 375, 376, 377
CHE.1.2 Design and conduct experiments using appropriate measurements, significant figures, graphical analysis to analyze data.	Students will conduct the <i>ChemLAB</i> first then continue to design the next part of the experiment through the <i>Inquiry Extension</i> . The teacher will guide students through their designed experiment. Student Edition: <i>ChemLAB/Inquiry Extension</i> 466, 584, 670, 776, 850 This activity provides opportunity for students to design an experiment. Teacher Wraparound Edition: DI 415
CHE.1.3 Enrichment: Research information from multiple appropriate sources and assess the credibility, accuracy, possible bias, and conclusions of each publication.	The following page references can be used to discuss how to assess the credibility of researched information. Student Edition: <i>Writing in Chemistry</i> 389, 465, 505, 511, 555, 697 Teacher Wraparound Edition: CP 348

Students must be presented with a solid f	PAGE REFERENCES y is the foundation of modern chemistry concepts. oundation of the atom and its components. These interactions of these components to explain
CHE.2 Students will demonstrate an unde historical developments leading to moder	rstanding of the atomic structure of atoms and the n atomic theory.
CHE.2.1 Investigate the historical progression leading to the modern atomic theory, including, but not limited to, work done by Dalton, Rutherford's gold foil experiment, Thomson's cathode ray experiment, Millikan's oil drop experiment, and Bohr's interpretation of bright line spectra.	Student Edition: 102-104, 107-114, 146-152 Figure 7 108 Figure 8 109 Figure 9 110 Figure 10 110-111 Figure 11 111 Figure 12 112 Figure 13 112 Figure 14 114 Figure 17 154 Table 1 103 Table 3 114 Teacher Wraparound Edition: As 147; CB 149; CD 110, 154; CJ 110; CP 103, 153; De 106-107; DI 109, 111; Ex 104, 112, 114; Re 114
CHE.2.2 Construct models (e.g., ball and stick, online simulations, mathematical computations) of atomic nuclei to explain the abundance-weighted average (relative mass) of elements and isotopes on the published mass of elements.	Student Edition: ChemLAB 126 MiniLAB 120 Teacher Wraparound Edition: As 117
CHE.2.3 Investigate absorption and emission spectra to interpret explanations of electrons at discrete energy levels using tools such as online simulations, spectrometers, prisms, flame tests, and discharge tubes. Explore both laboratory experiments and real-world examples.	Student Edition: ChemLAB 92, 164 Document-Based Questions 169 Figure 9 145 MiniLAB 144 Problem-Solving LAB 150 Teacher Wraparound Edition: As 147, 150, 157; De 156-157; QD 148

STANDARDS	PAGE REFERENCES
CHE.2.4 Research appropriate sources to evaluate	Student Edition:
the way absorption and emission spectra are used to study astronomy and the formation of the universe.	Connection to Astronomy 145
behavior. Periodic patterns in elements lea Electron configuration is a direct result of of electrons has led to the discovery of ne	istry is based on the predictability of atomic d to the development of the periodic table. this periodic behavior. The predictable behavior ew compounds, elements, and atomic interactions. understanding ionic and covalent bonding and
CHE.3 Students will demonstrate an under representation to predict properties of elements	rstanding of the periodic table as a systematic ments.
CHE.3.1 Explore and communicate the	Student Edition:
organization of the periodic table, including history,	174-181
groups, families, family names, metals, nonmetals, metalloids, and transition metals.	Figure 1 & 2 175
	Figure 3 177
	Figure 5 178-179
	Figure 9 184-185
	Section 1 Review 181 #1-#4
	Table 1 174
	Table 2 176
	Teacher Wraparound Edition:
	As 179; CJ 192; CP 177; DI 175; Ex 175; MI 174

STANDARDS	PAGE REFERENCES
STANDARDS CHE.3.2 Analyze properties of atoms and ions (e.g., metal/nonmetal/metalloid behavior, electrical/heat conductivity, electronegativity and electron affinity, ionization energy, and atomic/ionic radii) using periodic trends of elements based on the periodic table.	PAGE REFERENCESStudent Edition:187-194Applying Practices 191ChemLAB 196Example Problem 189Figure 5 178-179Figure 11 & 12 188Figure 14 190Figure 15 & 16 191Figure 17 193
	Figure 17 193 Figure 18 194 Practice Problems 189 Problem-Solving LAB 180 Section 1 Review 181 #5-#7 Section 3 Review 194 Teacher Wraparound Edition: As 179, 182, 185, 188; CD 187; CJ 189; CP 188; CU 194; De 190-191; Ext 181; ICE 189; MC 191; QD 179; R 179; Re 181, 186, 194; VL 192
CHE.3.3 Analyze the periodic table to identify quantum numbers (e.g., valence shell electrons, energy level, orbitals, sublevels, and oxidation numbers).	Student Edition: 182-185 Example Problem 186 Figure 7 & 8 183 Practice Problems 186 Section 2 Review 186 Table 3 182 Table 4 184 Teacher Wraparound Edition: As 183; CU 186; DI 182; Re 186

STANDARDS	PAGE REFERENCES
	tanding of bonding is necessary to further ots of compounds and chemical interactions.
CHE.4 Students will demonstrate an understanding of the types of bonds and resulting atomic structures for the classification of chemical compounds.	
CHE.4.1 Develop and use models (e.g., Lewis dot, 3-D ball-stick, 3-D printing, or simulation programs such as PhET) to predict the type of bonding between atoms and the shape of simple compounds.	Student Edition: ChemLAB 272 Example Problem 255, 256, 257, 260, 264 Figure 13 253 Figure 14 258 Figure 23 268 Practice Problem 255, 256, 257, 260, 264 Problem-Solving Strategy 254 Section 3 Review 260 Section 5 Review 270 #72-#77 Table 6 263 Teacher Wraparound Edition: As 263, 267; CD 254, 257; CJ 263, 267; CP 263; CU 259; DI 258; ICE 255, 256, 257, 264; QD 253; Re 259, 263; VL 253
CHE.4.2 Use models such as Lewis structures and ball and stick models to depict the valence electrons and their role in the formation of ionic and covalent bonds.	Student Edition: ChemLAB 272 Example Problem 244 Figure 3 241 Practice Problem 212, 244 Teacher Wraparound Edition: As 245; BM 243; CJ 214; CU 247; DI 211, 243; ICE 244; QD 261; R 241; VL 259
CHE.4.3 Predict the ionic or covalent nature of different atoms based on electronegativity trends and/or position on the periodic table.	Student Edition: Figure 22 267 Section 5 Review 270 #72-#77 Table 7 266 Teacher Wraparound Edition: CJ 267
CHE.4.4 Use models and oxidation numbers to predict the type of bond, shape of the compound, and the polarity of the compound.	Student Edition:Example Problem 345, 349Practice Problem 346Section 4 Review 350 #68-#69Teacher Wraparound Edition:CU 349; ICE 345, 349

STANDARDS	PAGE REFERENCES
CHE.4.5 Use models of simple hydrocarbons to exemplify structural isomerism.	Teacher Wraparound Edition: As 769; BM 766; QD 767
CHE.4.6 Use mathematical and computational analysis to determine the empirical formula and the percent composition of compounds.	Student Edition:Example Problem 345, 349Practice Problem 346Section 4 Review 350 #68-#69Teacher Wraparound Edition:CU 349; ICE 345, 349
CHE.4.7 Use scientific investigation to determine the percentage of composition for a substance (e.g., sugar in gum, water and/or unpopped kernels in popcorn, percent water in a hydrate). Compare results to justify conclusions based on experimental evidence.	Student Edition: ChemLAB 356 MiniLAB 342
CHE.4.8 Plan and conduct controlled scientific investigations to produce mathematical evidence of the empirical composition of a compound and its uses in the real world.	Teacher Wraparound Edition: As 345
CHE.5 Naming Compounds Conceptual Understanding: Polyatomic ion how metallic ions, nonmetals, and transition r	s (radicals) and oxidation numbers are used to predict netals are used in naming compounds.
CHE.5 Students will investigate and under the name and chemical formulas of compo	stand the accepted nomenclature used to identify ounds.
CHE.5.1 Use the periodic table and a list of common polyatomic ions as a model to derive chemical compound formulas from compound names and compound names from chemical formulas.	Student Edition: Chapter 7 Assessment 233 #83 ChemLAB 230 Example Problem 222 Practice Problem 222, 223 Problem-Solving Strategy 224 Teacher Wraparound Edition: As 223, 224; ICE 222
CHE.5.2 Generate formulas of ionic and covalent compounds from compound names. Discuss compounds in everyday life and compile lists and uses of these chemicals.	Student Edition: Chapter 7 Assessment 233 #81, 234 #102 Chapter 8 Assessment 274 #95, #96; 277 #139 Practice Problems 251 Section 2 Review 252 #35, #36 Standardized Test Practice 236 #5 Teacher Wraparound Edition: CJ 222; CU 224

STANDARDS	PAGE REFERENCES		
CHE.5.3 Generate names of ionic and covalent compounds from their formulas. Name binary compounds, binary acids, stock compounds, ternary compounds, and ternary acids.	Student Edition: Chapter 7 Assessment 233 #82 Chapter 8 Assessment 274 #93, #94; 277 #140 Example Problem 249 Personal Tutor 222 Practice Problems 223, 249, 251 Section 2 Review 252 #34 Teacher Wraparound Edition: CJ 251; ICE 249; Re 224		
CHE.6 Chemical Reactions Conceptual Understanding: Understanding chemical reactions and predicting products of these reactions is essential to student success.			
CHE.6 Students will demonstrate an under chemical reactions.	rstanding of the types, causes, and effects of		
CHE.6.1 Develop and use models to predict the products of chemical reactions (e.g., synthesis reactions; single replacement; double displacement; and decomposition, including exceptions such as decomposition of hydroxides, chlorates, carbonates, and acids). Discuss and/or compile lists of reactions used in everyday life.	Teacher Wraparound Edition: AC 304; BM 297; CJ 302; CP 282; DI 368; Ext 303; IM 286		
CHE.6.2 Plan, conduct, and communicate the results of investigations to demonstrate different types of simple chemical reactions.	Student Edition: ChemLAB 310 Inquiry Extension 310 Teacher Wraparound Edition: DI 294, 300		
CHE.6.3 Use mathematics and computational analysis to represent the ratio of reactants and products in terms of masses, molecules, and moles (stoichiometry).	Student Edition: ChemLAB 390 Example Problem 375, 376, 377 Personal Tutor 371 Practice Problems 372, 375, 376, 377 Problem-Solving Strategy 374 Section 11 Review 372 #8-#9 Teacher Wraparound Edition: As 371; CJ 375; CP 373; CU 371, 377; DI 374; Ext 371; ICE 375, 376, 377; Re 371, 377		

STANDARDS	PAGE REFERENCES
CHE.6.4 Use mathematics and computational	Student Edition:
analysis to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. Give real-world examples (e.g., burning wood).	ChemLAB 390
	Example Problem 370
	MiniLAB 378
	Practice Problems 371
	Table 1 369
	Teacher Wraparound Edition:
	As 374; CJ 369; DI 286; ICE 370; QD 285, 374
CHE.6.5 Plan and conduct a controlled scientific	Student Edition:
investigation to produce mathematical evidence that mass is conserved. Use percent error to	ChemLAB 390
analyze the accuracy of results.	MiniLAB 378
CHE.6.6 Use mathematics and computational	Student Edition:
analysis to support the concept of percent yield and limiting reagent.	Chapter 11 Assessment 394-395
iinniing reageni.	
. .	Data Analysis LAB 387
	Data Analysis LAB 387 Example Problem 382-383, 386
	Example Problem 382-383, 386 Practice Problem 383, 387
	Example Problem 382-383, 386 Practice Problem 383, 387 Teacher Wraparound Edition:
	Example Problem 382-383, 386 Practice Problem 383, 387
CHE.6.7 Plan and conduct a controlled scientific	Example Problem 382-383, 386 Practice Problem 383, 387 Teacher Wraparound Edition: As 383; CU 388; DI 381; ICE 382, 386; IM 380;
investigation to produce mathematical evidence to	Example Problem 382-383, 386 Practice Problem 383, 387 Teacher Wraparound Edition: As 383; CU 388; DI 381; ICE 382, 386; IM 380; QD 386; Re 388
investigation to produce mathematical evidence to predict and confirm the limiting reagent and percent	Example Problem 382-383, 386 Practice Problem 383, 387 Teacher Wraparound Edition: As 383; CU 388; DI 381; ICE 382, 386; IM 380; QD 386; Re 388 Teacher Wraparound Edition:
investigation to produce mathematical evidence to	Example Problem 382-383, 386 Practice Problem 383, 387 Teacher Wraparound Edition: As 383; CU 388; DI 381; ICE 382, 386; IM 380; QD 386; Re 388 Teacher Wraparound Edition:

STANDARDS

PAGE REFERENCES

CHE.7 Gas Laws

Conceptual Understanding: The comparison and development of the molecular states of matter are an integral part of understanding matter. Pressure, volume, and temperature are imperative to understanding the states of matter.

CHE.7 Students will demonstrate an understanding of the structure and behavior of gases.

CHE.7.1 Analyze the behavior of ideal and real gases in terms of pressure, volume, temperature, and number of particles.	Student Edition: 442-445, 447, 449, 451, 452, 454, 457-459 Concepts in Motion 447 Figure 1 442 Figure 2 445 Figure 3 447 Table 1 451 Virtual Investigations 449
	Teacher Wraparound Edition: As 453; De 442-443; DI 455; IM 447; QD 454, 455; R 452
CHE.7.2 Enrichment: Use an engineering design process to develop models (e.g., online simulations or student interactive activities) to explain and predict the behavior of each state of matter using the movement of particles and intermolecular forces to explain the behavior of matter.*	The following lessons can be used to introduce the design process. Student Edition: Chapter 12 Lessons 1-3 Students build models of phases/kinetic motion and crystalline structures. Teacher Wraparound Edition: BM 415; DI 421
CHE.7.3 Analyze and interpret heating curve graphs to explain the energy relationship between states of matter (e.g., thermochemistry-water heating from -20°C to 120°C).	Student Edition: <i>Problem-Solving LAB</i> 531
CHE.7.4 Use mathematical computations to describe the relationships comparing pressure, temperature, volume, and number of particles, including Boyle's law, Charles's law, Dalton's law, combined gas laws, and ideal gas laws.	Student Edition: Example Problem 409, 443, 446, 448, 450, 453, 455 Personal Tutor 409, 449 Practice Problems 409, 443, 446, 448, 450, 453, 455 Problem-Solving Strategies 458 Table 1 451 Teacher Wraparound Edition: As 448, 451, 454, 456; DI 445, 449, 455; ICE 409, 443, 446, 448, 450, 453, 455

STANDARDS	PAGE REFERENCES		
CHE.7.5 Enrichment: Use an engineering design process and online simulations or lab investigations to design and model the results of controlled scientific investigations to produce mathematical evidence that confirms the gas-laws relationships.*	Teacher Wraparound Edition: As 442; BM 448; DI 450		
CHE.7.6 Use the ideal gas law to support the prediction of volume, mass, and number of particles produced in chemical reactions (i.e., gas stoichiometry).	Student Edition: 460-461, 464 <i>Example Problem</i> 461, 462-463 <i>Figure 10</i> 460 <i>Practice Problems</i> 463 Teacher Wraparound Edition: CD 461; CU 464; DI 460; Ext 464; ICE 461, 463; Re 464		
CHE.7.7 Plan and conduct controlled scientific investigations to produce mathematical evidence that confirms that reactions involving gases conform to the law of conservation of mass.	Student Edition: ChemLAB 466 Inquiry Extension 466 Teacher Wraparound Edition: QD 462		
CHE.7.8 Enrichment: Using gas stoichiometry, calculate the volume of carbon dioxide needed to inflate a balloon to occupy a specific volume. Use the engineering design process to design, construct, evaluate, and improve a simulated air bag.*	The following lesson can be used to introduce the design process. Student Edition: Chapter 12 Lesson 3		
CHE.8 Solutions Conceptual Understanding: Solutions exist as solids, liquids, or gases. Solution concentration is expressed by specifying relative amounts of solute to solvent.			
CHE.8 Students will demonstrate an understanding of the nature of properties of various types of chemical solutions.			
CHE.8.1 Use mathematical and computational analysis to quantitatively express the concentration of solutions using the concepts such as molarity, percent by mass, and dilution.	Student Edition: Chapter 14 Assessment 508-509 #67-#85 Example Problem 481, 483, 486 Practice Problems 481, 483, 486 Section 2 Review 488 #33 Teacher Wraparound Edition: ICE 481, 483, 486		
CHE.8.2 Develop and use models (e.g., online simulations, games, or video representations) to explain the dissolving process in solvents on the molecular level.	This standard can be met using the following page reference to introduce models. Student Edition: <i>Concepts in Motion</i> 490		

STANDARDS	PAGE REFERENCES
CHE.8.3 Analyze and interpret data to predict the effect of temperature and pressure on solids and gases dissolved in water.	Teacher Wraparound Edition: As 496; De 492-493; Ext 496; VL 494
CHE.8.4 Design, conduct, and communicate the results of experiments to test the conductivity of common ionic and covalent compounds in solution.	Student Edition: Inquiry Extension 230
CHE.8.5 Use mathematical and computational analysis to analyze molarity, molality, dilution, and percentage dilution problems.	Student Edition: Chapter 14 Assessment 508 #67-#77 Example Problem 483, 486, 487 Personal Tutor 487 Practice Problems 483, 486, 487 Teacher Wraparound Edition: As 485; ICE 483, 487; R 487
CHE.8.6 Design, conduct, and communicate the results of experiments to produce a specified volume of a solution of a specific molarity, and dilute a solution of a known molarity.	Teacher Wraparound Edition: As 485; QD 484
CHE.8.7 Use mathematical and computational analysis to predict the results of reactions using the concentration of solutions (i.e., solution stoichiometry).	This standard can be introduced with classroom discussion and information on stoichiometry.
CHE.8.8 Enrichment: Investigate parts per million and/or parts per billion as it applies to environmental concerns in your geographic region, and reference laws that govern these factors.	Teacher Wraparound Edition: CD 486-487; CP 485; Ext 488
CHE.9 Acids and Bases (Enrichment)	
CHE.9 Enrichment: Students will understa salt solutions.	nd the nature and properties of acids, bases, and
CHE.9.1 Enrichment: Analyze and interpret data to describe the properties of acids, bases, and salts.	Student Edition: Section 1 Review 643 #6 Virtual Investigations 616 Teacher Wraparound Edition: CU 643; Ext 637; MI 634; QD 634, 635, 638
CHE.9.2 Enrichment: Analyze and interpret data to identify differences between strong and weak acids and bases (i.e., dissociation).	Student Edition:MiniLAB 648Teacher Wraparound Edition:CB 644; CP 647; CU 649; DI 645; MI 644; Re 649
CHE.9.3 Enrichment: Plan and conduct investigations using the pH scale to classify acid and base solutions.	Student Edition: ChemLAB 670

STANDARDS	PAGE REFERENCES	
CHE.9.4 Enrichment: Analyze and evaluate the Arrhenius, Bronsted-Lowry, and Lewis acid-base definitions.	Student Edition: 637-643 <i>Figure</i> 7 639 <i>Figure</i> 9 640 Teacher Wraparound Edition: As 639; De 640-641; DI 639, 642; Re 643	
CHE.9.5 Enrichment: Use mathematical and computational thinking to calculate pH from the hydrogen-ion concentration.	Student Edition: Example Problem 653, 654 Practice Problems 653, 654 Section 3 Review 658 #42 Teacher Wraparound Edition: ICE 653, 654	
CHE.9.6 Enrichment: Obtain, evaluate, and communicate information about how buffers stabilize pH in acid-base reactions.	Student Edition: Problem-Solving LAB 668 Teacher Wraparound Edition: As 667; De 666-667; QD 666	
CHE.10 Thermochemistry (Enrichment)		
CHE.10 Enrichment: Students will understand that energy is exchanged or transformed in all chemical reactions.		
CHE.10.1 Enrichment: Construct explanations to explain how temperature and heat flow in terms of the motion of molecules (or atoms).	Student Edition: 526-528, 530-531 Concepts in Motion 530 Figure 8 527 Figure 9 528 Figure 10 530 Teacher Wraparound Edition: CP 526; CU 528; DI 525; Ext 533; MC 527; QD 530	

STANDARDS	PAGE REFERENCES
CHE.10.2 Enrichment: Classify chemical reactions and phase changes as exothermic or endothermic based on enthalpy values. Use a graphical representation to illustrate the energy changes involved.	Student Edition: 530-531 Chapter 15 Assessment 553 #90-#91 ChemLAB 550 Example Problem 536 Figure 8 527 Figure 9 528 Figure 10 530 Figure 13 535 Practice Problem 537 Section 2 Review 528 #17 Teacher Wraparound Edition:
CHE.10.3 Enrichment: Analyze and interpret data from energy diagrams and investigations to support claims that the amount of energy released or absorbed during a chemical reaction depends on changes in total bond energy.	CD 527; DI 525; MC 527 Student Edition: 540 <i>ChemLAB</i> 550 <i>Example Problem</i> 540 <i>Practice Problem</i> 541 Teacher Wraparound Edition: ICE 540
CHE.10.4 Enrichment: Use mathematical and computational thinking to solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change.	Student Edition: <i>Example Problem</i> 525 <i>MiniLAB</i> 526 <i>Practice Problems</i> 525 <i>Section 2 Review</i> 528 #21

STANDARDS	PAGE REFERENCES
CHE.11 Equilibrium (Enrichment)	
CHE.11 Enrichment: Students will understand that chemical equilibrium is a dynamic process at the molecular level.	
CHE.11.1 Enrichment: Construct explanations to explain how to use Le Chatelier's principle to predict the effect of changes in concentration, temperature, and pressure.	Student Edition: 607-610 Chapter 17 Assessment 626 #54-#57 Concepts in Motion 610 Figure 12 608 Figure 13 609 Figure 14 & 15 610 MiniLAB 611 Section 1 Review 605 #12 Section 2 Review 611 Teacher Wraparound Edition: AC 609; As 609; CB 612; Ext 610; QD 607; Re 610
CHE.11.2 Enrichment: Predict when equilibrium is established in a chemical reaction.	Student Edition: Extended Response 631 #13-#14 Figure 2 595 Figure 3 596 Teacher Wraparound Edition: VL 595, 596
CHE.11.3 Enrichment: Use mathematical and computational thinking to calculate an equilibrium constant expression for a reaction.	Student Edition:Example Problem 603, 605Practice Problem 603, 605Section 1 Review 605 #11Teacher Wraparound Edition:As 605; ICE 603, 604; QD 603

CHE.12 Organic Nomenclature (Enrichment) CHE.12 Enrichment: Students will understand that the bonding characteristics of carbon allow the formation of many different organic molecules with various sizes, shapes, and chemical properties. CHE.12.1 Enrichment: Construct explanations to **Student Edition:** explain the bonding characteristics of carbon that Chapter 21 Assessment 778 #40 result in the formation of basic organic molecules. Concepts in Motion 765 Figure 4 & 5746 Figure 9752 Figure 10755 Figure 17765 Figure 18 & 19766 Launch Lab 742 Section 1 Review 749 #4 Table 1 750 **Teacher Wraparound Edition:** BM 766; CU 749; DI 751, 765; LL 742; MI 744, 765; VL 752 CHE.12.2 Enrichment: Obtain information to **Student Edition:** communicate the system used for naming the basic 751-753 linear hydrocarbons and isomers that contain single Chapter 21 Assessment 778-780 bonds, simple hydrocarbons with double and triple Example Problem 754-755, 756-757, 761, 773 bonds, and simple molecules that contain a benzene ring. Figure 5746 Figure 10755 Figure 12 & 13760 Practice Problems 755, 757, 761, 773 Section 2 Review 758 #13 Section 3 Review 764 #21 Table 2 751 Table 3753 Table 5759 Table 6 763 **Teacher Wraparound Edition:** As 751; DI 756; ICE 755, 757, 761, 773; IM 754; MI 759; R 753; VL 752 CHE.12.3 Enrichment: Develop and use models to **Teacher Wraparound Edition:** identify the functional groups that form the basis of As 801; DI 797 alcohols, ketones, ethers, amines, esters, aldehvdes, and organic acids.

STANDARDS

PAGE REFERENCES