Inspire Biology is designed to meet 100% of the Next Generation Science Standards through both print and digital resources. The Student Edition, accessible in print and online, can be used as a research tool by students as they investigate concepts and collect evidence. Interactive Digital Content, labs, and projects that support the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts, as well as CCSS Mathematics and ELA/Literacy, are available online.

Correlation of Inspire Biology

See to the NGSS		
HS-LS1	From Molecules to Organisms: Structures and Processes	
HS-LS1-1.	Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells. [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.]	Online: Applying Practices: <i>Transcription</i> <i>and Translation</i> STEM Unit Project 3
SEP Science and	Engineering Practices	
 Construct an explana of sources (including review) and the assu 	ations and Designing Solutions ation based on valid and reliable evidence obtained from a variety students' own investigations, models, theories, simulations, peer mption that theories and laws that describe the natural world operate the past and will continue to do so in the future.	Online: <i>Science and Engineering</i> <i>Practices Handbook:</i> Practice 6
DCI Disciplinary	Core Ideas	·
 LS1.A: Structure and Systems of specialize of life. 	Function ed cells within organisms help them perform the essential functions	Student Edition: 7, 10 Q2, 242– 243, 513–517, 520, 539, 548, 552, 598–602, 603–608, 609–613, 610 Get It?, 619–624, 631–634, 645–653, 654 Q5, 655–658, 660–663, 670– 674, 681–687, 693–698, 725–733
• All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (Note: This Disciplinary Core Idea is also addressed by HS-LS3-1.)		Student Edition: 156–157, 167, 186, 222, 231, 244 Q1, 288–295, 296–298, 299–305, 305 Q1, 306–314, 330–331
CCC Crosscutting	Concepts	
of the properties of c	on gning new systems or structures requires a detailed examination different materials, the structures of different components, and ponents to reveal its function and/or solve a problem.	Online: Science and Engineering Practices Handbook

CCSS ELA/Literacy	
RST.11-12.1, WHST.9–12.2.a–e	Online:
	Applying Practices: Transcription and Translation
	STEM Unit Project 3

HS-LS1	From Molecules to Organisms: Structures and Processes	
HS-LS1-2.	Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]	Online: Applying Practices: <i>Hierarchical</i> <i>Organization in Plants</i> STEM Unit Project 5 STEM Unit Project 6
SEP Science and	Engineering Practices	
Developing and UsirDevelop and use a nor between componies	nodel based on evidence to illustrate the relationships between systems	Online: Science and Engineering Practices Handbook: Practice 2
DCI Disciplinary	Core Ideas	·
-	Function sms have a hierarchical structural organization, in which any one of numerous parts and is itself a component of the next level.	Student Edition: 7, 8, 10 Q2, 50 531 Q3, 539, 543, 598–602, 59 Get It?, 603–608, 609–613, 619 624,624 Q2, 631–634, 645–653 655–658, 660–663, 670–674, 681–687, 693–698, 725–733
CCC Crosscutting	g Concepts	1
	al, mathematical, computer models) can be used to simulate systems cluding energy, matter, and information flows—within and between	Online: Science and Engineering Practices Handbook
CCSS ELA/Literacy	/	
SL.11-12.5		Online: Applying Practices: <i>Hierarchical</i> <i>Organization in Plants</i>
		STEM Unit Project 5 STEM Unit Project 6

NGSS Correlations **5T** THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

HS-LS1	From Molecules to Organisms: Structures and Processes	
() HS-LS1-3.	Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]	Online: Applying Practices: <i>Investigate</i> <i>Osmosis</i> STEM Unit Project 2 STEM Unit Project 6
SEP Science and	Engineering Practices	
serve as the basis for accuracy of data need	g Out Investigations investigation individually and collaboratively to produce data to r evidence, and in the design: decide on types, how much, and ded to produce reliable measurements and consider limitations on lata (e.g., number of trials, cost, risk, time), and refine the design	Online: Science and Engineering Practices Handbook: Practice 3
Scientific inquiry is ch	ns Use a Variety of Methods naracterized by a common set of values that include: logical thinking, edness, objectivity, skepticism, replicability of results, and honest	Online: Science and Engineering Practices Handbook: Practice 3 Student Edition: 11–16
DCI Disciplinary (Core Ideas	
limits and mediate be conditions change wi	Function ns maintain a living system's internal conditions within certain haviors, allowing it to remain alive and functional even as external ithin some range. Feedback mechanisms can encourage (through discourage (negative feedback) what is going on inside the living	Student Edition: 10, 605, 605 Get it?, 608, 681–687, 684 Get It?, 687 Q1, 694, 695, 697, 698, 698 Q5, 710 Q6
CCC Crosscutting	Concepts	1
Stability and Change • Feedback (negative of	or positive) can stabilize or destabilize a system.	Online: Science and Engineering Practices Handbook Student Edition: 10
CCSS ELA/Literacy		
WHST.9–12.7, WHST.11-		Online: Applying Practices: Investigate Osmosis STEM Unit Project 2 STEM Unit Project 6

HS-LS1	From Molecules to Organisms: Structures and Processes	
() HS-LS1-4.	Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.]	Online: Applying Practices: <i>Mitosis and</i> <i>Cellular Differentiation</i> STEM Unit Project 2
SEP Science and	Engineering Practices	
 Developing and Using Use a model based of between component DCI Disciplinary 	on evidence to illustrate the relationships between systems or a system.	Online: Science and Engineering Practices Handbook: Practice 2
 In multicellular organ mitosis, thereby allow (fertilized egg) that d passing identical ger daughter cells. Cellu 	evelopment of Organisms isms individual cells grow and then divide via a process called wing the organism to grow. The organism begins as a single cell ivides successively to produce many cells, with each parent cell netic material (two variants of each chromosome pair) to both lar division and differentiation produce and maintain a complex I of systems of tissues and organs that work together to meet the organism.	Student Edition: 220–230, 242–243, 244 Q4, 542–543, 700
CCC Crosscutting	Concepts	
	al, mathematical, computer models) can be used to simulate systems cluding energy, matter, and information flows—within and between	Online: Science and Engineering Practices Handbook Student Edition: 45
CCSS Mathematics	;	
MP.4, F-IF.7.a-e, F-BF.1.a-c		Online: Applying Practices: <i>Mitosis and</i> <i>Cellular Differentiation</i> STEM Unit Project 2
CCSS ELA/Literacy		
SL.11-12.5		Online: Applying Practices: <i>Mitosis and</i> <i>Cellular Differentiation</i>

HS-LS1	From Molecules to Organisms: Structures and Processes	
HS-LS1-5.	Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]	Online: Applying Practices: <i>Modeling</i> <i>Photosynthesis</i> STEM Unit Project 2
SEP Science and	Engineering Practices	
 Developing and Using Use a model based of between component 	on evidence to illustrate the relationships between systems or	Online: Science and Engineering Practices Handbook: Practice 2
DCI Disciplinary	Core Ideas	
The process of photo	or Matter and Energy Flow in Organisms osynthesis converts light energy to stored chemical energy by oxide plus water into sugars plus released oxygen.	Student Edition: 35, 41, 187, 200, 202–208, 208 Q1, 214, 506
CCC Crosscutting	Concepts	1
	and matter in a system can be described in terms of energy and t of, and within that system.	Online: Science and Engineering Practices Handbook Student Edition: 39–44, 139–140, 198
CCSS ELA/Literacy		·
SL.11-12.5		Online: Applying Practices: <i>Modeling</i> <i>Photosynthesis</i> STEM Unit Project 2

	From Molecules to Organisms: Structures and Processes	
() HS-LS1-6.	Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.]	Online: Applying Practices: <i>Exploring</i> <i>Macromolecules</i> STEM Unit Project 2
SEP Science and	Engineering Practices	
 Construct and revis a variety of sources peer review) and th 	hations and Designing Solutions be an explanation based on valid and reliable evidence obtained from a (including students' own investigations, models, theories, simulations, be assumption that theories and laws that describe the natural world bey did in the past and will continue to do so in the future.	Online: Science and Engineering Practices Handbook: Practice 6
DCI Disciplinary	Core Ideas	1
The sugar molecule hydrocarbon backb molecules that can	for Matter and Energy Flow in Organisms as thus formed contain carbon, hydrogen, and oxygen: their pones are used to make amino acids and other carbon-based	Student Edition: 151–157, 157 Q6 202, 207–208, 208 Q2
for example to form	be assembled into larger molecules (such as proteins or DNA), used new cells.	
• As matter and ener		Student Edition: 35–38, 39–44, 39 figure 17 caption question, 129, 198, 200–201, 202–208, 208 Q2, 210–214, 675–677
• As matter and ener	gy flow through different organizational levels of living systems, are recombined in different ways to form different products.	39 figure 17 caption question, 129, 198, 200–201, 202–208,
As matter and ener chemical elements CCC Crosscutting Energy and Matter Changes of energy	gy flow through different organizational levels of living systems, are recombined in different ways to form different products.	39 figure 17 caption question, 129, 198, 200–201, 202–208,
 As matter and ener chemical elements CCC Crosscutting Energy and Matter Changes of energy 	an new cells. gy flow through different organizational levels of living systems, are recombined in different ways to form different products. g Concepts and matter in a system can be described in terms of energy and ut of, and within that system.	39 figure 17 caption question, 129, 198, 200–201, 202–208, 208 Q2, 210–214, 675–677 Online: Science and Engineering Practices Handbook Student Edition: 39–44, 139–

HS-LS1	From Molecules to Organisms: Structures and Processes	
HS-LS1-7.	Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]	Online: Applying Practices: <i>Modeling</i> <i>Cellular Respiration</i> STEM Unit Project 2
SEP Science and	Engineering Practices	
 Developing and Using Use a model based of between component 	on evidence to illustrate the relationships between systems or	Online: Science and Engineering Practices Handbook: Practice 2
DCI Disciplinary	Core Ideas	
• As matter and energ	or Matter and Energy Flow in Organisms y flow through different organizational levels of living systems, re recombined in different ways to form different products.	Student Edition: 35–38, 39–44, 39 figure 17 caption question, 129, 198, 200–201, 202–208, 208 Q2, 210–214, 675–677
interacting molecules bonds of food molec formed that can trans	chemical reactions, energy is transferred from one system of s to another. Cellular respiration is a chemical process in which the ules and oxygen molecules are broken and new compounds are sport energy to muscles. Cellular respiration also releases the energy body temperature despite ongoing energy transfer to the surrounding	Student Edition: 140, 200, 209–214, 214 Q1
CCC Crosscutting	Concepts	
	eated or destroyed—it only moves between one place and another octs and/or fields, or between systems.	Online: Science and Engineering Practices Handbook Student Edition: 39–44, 139–140, 198
CCSS ELA/Literacy		
SL.11-12.5		Online: Applying Practices: <i>Modeling</i> <i>Cellular Respiration</i>
		STEM Unit Project 2

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
HS-LS2-1.	Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]	Online: Applying Practices: <i>Carrying</i> <i>Capacity of Nectar-Feeding Bats</i> STEM Unit Project 1
SEP Science and	l Engineering Practices	
-	and Computational Thinking ind/or computational representations of phenomena or design t explanations.	Online: Science and Engineering Practices Handbook: Practice 5
DCI Disciplinary	Core Ideas	
 Ecosystems have ca populations they ca living and nonliving and disease. Organ were it not for the fa 	ent Relationships in Ecosystems arrying capacities, which are limits to the numbers of organisms and n support. These limits result from such factors as the availability of resources and from such challenges such as predation, competition, isms would have the capacity to produce populations of great size act that environments and resources are finite. This fundamental abundance (number of individuals) of species in any given ecosystem.	Student Edition: 28–30, 32–34, 34 Q1, 77–85, 85 Q2, 86–87, 91–92
CCC Crosscutting	J Concepts	
Scale, Proportion, aThe significance of which it occurs.	nd Quantity a phenomenon is dependent on the scale, proportion, and quantity at	Online: Science and Engineering Practices Handbook
	S	
CCSS Mathematic	-	
		Online: Applying Practices: <i>Carrying</i> <i>Capacity of Nectar-Feeding Bats</i> STEM Unit Project 1
MP.2, MP.4, N-Q.1-3		Applying Practices: Carrying Capacity of Nectar-Feeding Bats
CCSS Mathematic MP.2, MP.4, N-Q.1-3 CCSS ELA/Literacy RST.11-12.1, WHST.9–1	y	Applying Practices: Carrying Capacity of Nectar-Feeding Bats

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
() HS-LS2-2.	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]	Online: Applying Practices: <i>Biodiversity in</i> <i>Leaf Litter</i> STEM Unit Project 1
SEP Science and I	Engineering Practices	·
-	nd Computational Thinking presentations of phenomena or design solutions to support and	Online: Science and Engineering Practices Handbook: Practice 5
Most scientific knowle	is Open to Revision in Light of New Evidence edge is quite durable, but is, in principle, subject to change based on reinterpretation of existing evidence.	Online: Science and Engineering Practices Handbook: Practice 6, Practice 7
		Student Edition: 13–15
DCI Disciplinary C	Core Ideas	
 Ecosystems have carr populations they can living and nonliving re and disease. Organise were it not for the fact 	At Relationships in Ecosystems rying capacities, which are limits to the numbers of organisms and support. These limits result from such factors as the availability of esources and from such challenges such as predation, competition, ms would have the capacity to produce populations of great size t that environments and resources are finite. This fundamental bundance (number of individuals) of species in any given ecosystem.	Student Edition: 28–30, 32–34, 34 Q1, 77–85, 85 Q2, 86–87, 91–92
 LS2.C: Ecosystem Dynamics, Functioning, and Resilience A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. 		Student Edition: 50–53, 53 Get It?, 53 Q3, Q6, 105–112, 115–120
CCC Crosscutting	Concepts	
 Scale, Proportion, and Using the concept of scale relates to a mod 	orders of magnitude allows one to understand how a model at one	Online: Science and Engineering Practices Handbook

1

CCSS Mathematics	
MP.2, MP.4, N-Q.1-3	Online: Applying Practices: <i>Biodiversity in Leaf Litter</i> STEM Unit Project 1
CCSS ELA/Literacy	
RST.11-12.1, WHST.9–12.2.a–e	Online: Applying Practices: <i>Biodiversity in Leaf Litter</i> STEM Unit Project 1

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics		
() HS-LS2-3.	Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]	Online: Applying Practices: <i>The Cycling</i> of Matter and Flow of Energy in Aerobic and Anaerobic Conditions STEM Unit Project 1	
SEP Science and	Engineering Practices		
 Construct and revise a variety of sources (i peer review) and the 	tions and Designing Solutions an explanation based on valid and reliable evidence obtained from ncluding students' own investigations, models, theories, simulations, assumption that theories and laws that describe the natural world y did in the past and will continue to do so in the future.	Online: Science and Engineering Practices Handbook: Practice 6	
 Connections to Nature of Science Scientific Knowledge is Open to Revision in Light of New Evidence Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. 		Online: Science and Engineering Practices Handbook: Practice 6, Practice 7 Student Edition: 13–15	
DCI Disciplinary (DCI Disciplinary Core Ideas		
-	er and Energy Transfer in Ecosystems cellular respiration (including anaerobic processes) provide most of ocesses.	Student Edition: 35–39, 198, 200–201, 202–208, 201 Q 6, 209–214, 456	

Continued from previous page.

CCC Crosscutting Concepts	
Energy and Matter Energy drives the cycling of matter within and between systems. 	Online: Science and Engineering Practices Handbook Student Edition: 39–44, 139–140, 198
CCSS ELA/Literacy	
RST.11–12.1, WHST.9–12.2.a–e, WHST.9–12.5	Online: Applying Practices: The Cycling of Matter and Flow of Energy in Aerobic and Anaerobic Conditions STEM Unit Project 1

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
() HS-LS2-4.	Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]	Online: Applying Practices: <i>Ecological</i> <i>Pyramids</i> STEM Unit Project 1
SEP Science and	Engineering Practices	1
-	nd Computational Thinking presentations of phenomena or design solutions to support claims.	Online: Science and Engineering Practices Handbook: Practice 5
DCI Disciplinary	Core Ideas	·
 Plants or algae form only a small fraction produce growth and inefficiency, there are matter reacts to releas structures, and much organisms pass throut 	the lowest level of the food web. At each link upward in a food web, of the matter consumed at the lower level is transferred upward, to release energy in cellular respiration at the higher level. Given this e generally fewer organisms at higher levels of a food web. Some ase energy for life functions, some matter is stored in newly made is discarded. The chemical elements that make up the molecules of ugh food webs and into and out of the atmosphere and soil, and they combined in different ways. At each link in an ecosystem, matter and	Student Edition: 35–38, 38 Q3, Q5–6, 39–44, 198, 200, 481

14T NGSS Correlations

energy are conserved.

THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

CCC Crosscutting Concepts	
 Energy and Matter Energy cannot be created or destroyed—it only moves between one place and another place, between objects and/or fields, or between systems. 	Online: Science and Engineering Practices Handbook Student Edition: 39–44, 139–140 198
CCSS Mathematics	
MP.2, MP.4, N-Q.1-3	Online: Applying Practices: Ecological Pyramids STEM Unit Project 1

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
HS-LS2-5.	Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]	Online: Applying Practices: Modeling the Carbon Cycle STEM Unit Project 2
SEP Science and	Engineering Practices	
 Developing and Usin Develop a model ba components of a system 	sed on evidence to illustrate the relationships between systems or	Online: Science and Engineering Practices Handbook: Practice 2
DCI Disciplinary	Core Ideas	
 Photosynthesis and which carbon is exch 	ter and Energy Transfer in Ecosystems cellular respiration are important components of the carbon cycle, in nanged among the biosphere, atmosphere, oceans, and geosphere nysical, geological, and biological processes.	Student Edition: 39, 41, 44 Q6, 67, 200
-	emical Processes olar energy is captured and stored on Earth is through the complex own as photosynthesis.	Student Edition: 35, 198, 200, 201 Q1, 202–208
CCC Crosscutting	Concepts	
	al, mathematical, computer models) can be used to simulate systems cluding energy, matter, and information flows—within and between	Online: Science and Engineering Practices Handbook

NGSS Correlations **15T** THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
() HS-LS2-6.	Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]	Online: Applying Practices: <i>Local</i> <i>Ecosystem Dynamics</i> STEM Unit Project 1
SEP Science and I	Engineering Practices	
	t from Evidence vidence, and reasoning behind currently accepted explanations or e the merits of arguments.	Online: Science and Engineering Practices Handbook: Practice 7
Scientific argumentati	e of Science is Open to Revision in Light of New Evidence fon is a mode of logical discourse used to clarify the strength of n ideas and evidence that may result in revision of an explanation.	Online: Science and Engineering Practices Handbook: Practice 1, Practice 7, Practice 8
DCI Disciplinary C	Core Ideas	
 A complex set of inter organisms relatively of modest biological or p more or less original s very different ecosyst 	namics, Functioning, and Resilience ractions within an ecosystem can keep its numbers and types of constant over long periods of time under stable conditions. If a obysical disturbance to an ecosystem occurs, it may return to its status (i.e., the ecosystem is resilient), as opposed to becoming a em. Extreme fluctuations in conditions or the size of any population, ge the functioning of ecosystems in terms of resources and habitat	Student Edition: 50–53, 53 Get It?, 53 Q3 Q6, 105–112, 115–120
CCC Crosscutting	Concepts	·
Stability and ChangeMuch of science deal remain stable.	s with constructing explanations of how things change and how they	Online: Science and Engineering Practices Handbook
CCSS Mathematics		,
MP.2, S-ID.1, S-IC.1, S-IC	.6	Online: Applying Practices: Local Ecosystem Dynamics STEM Unit Project 1

CCSS ELA/Literacy

RST.11-12.1, RST.11-12.7, RST.9-10.8, RST.11-12.8.a-e

Online:

Applying Practices: Local Ecosystem Dynamics

STEM Unit Project 1

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
() HS-LS2-7.	Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]	Online: Applying Practices: <i>Microbeads,</i> <i>Mega–Problem</i> STEM Unit Project 1
SEP Science and	Engineering Practices	
• Design, evaluate, and	tions and Designing Solutions d refine a solution to a complex real-world problem, based on student-generated sources of evidence, prioritized criteria, and ns.	Online: Science and Engineering Practices Handbook: Practice 6
DCI Disciplinary (Core Ideas	
Moreover, anthropog including habitat desi	namics, Functioning, and Resilience enic changes (induced by human activity) in the environment— truction, pollution, introduction of invasive species, overexploitation, -can disrupt an ecosystem and threaten the survival of some species.	Student Edition: 6, 55, 56, 70, 104, 105–112, 110 Get It?, 112 Q12, 113–120, 573, 575, 577, 580
	nd Humans sed by the formation of new species (speciation) and decreased by xtinction). (secondary to HS-LS2-7)	Student Edition: 98–100, 104 Q2, 105–106, 385, 388
biodiversity. But hum overpopulation, over species, and climate and productivity are r Sustaining biodiversit	the living world for the resources and other benefits provided by an activity is also having adverse impacts on biodiversity through exploitation, habitat destruction, pollution, introduction of invasive change. Thus sustaining biodiversity so that ecosystem functioning maintained is essential to supporting and enhancing life on Earth. ty also aids humanity by preserving landscapes of recreational or econdary to HS-LS2-7) (Note: This Disciplinary Core Idea is also 4-6.)	Student Edition: 6, 55, 56, 70, 101–104, 104 Q1, 105–112, 113–120, 573, 575, 577, 580
including cost, safety	ossible Solutions utions it is important to take into account a range of constraints , reliability and aesthetics and to consider social, cultural and ts. (secondary to HS-LS2-7)	Online: Science and Engineering Practices Handbook: Practice 6 Student Edition: 115–120, 120 Q4

Continued from previous page.

CCC Crosscutting Concepts	
Stability and Change	Online:
• Much of science deals with constructing explanations of how things change and how they remain stable.	Science and Engineering Practices Handbook
CCSS Mathematics	1
MP.2, N-Q.1-3	Online:
	Applying Practices: <i>Microbeads, Mega-Problem</i>
	STEM Unit Project 1
CCSS ELA/Literacy	
RST.11-12.7, RST.9-10.8, RST.11-12.8.a—e, WHST.9—12.7	Online:
	Applying Practices: <i>Microbeads, Mega-Problem</i>
	STEM Unit Project 1

HS-LS2	Ecosystems: Interactions, Energy, and Dynamics	
HS-LS2-8.	Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]	Online: Applying Practices: <i>Investigating</i> <i>Group Behavior</i> STEM Unit Project 1 STEM Unit Project 5
SEP Science and E	Engineering Practices	
 Engaging in Argument Evaluate the evidence arguments. DCI Disciplinary C 	e behind currently accepted explanations to determine the merits of	Online: Science and Engineering Practices Handbook: Practice 7
LS2.D: Social Interacti	ons and Group Behavior volved because membership can increase the chances of survival	Student Edition: 583–590, 589 Get It?, 590 Q3
CCC Crosscutting	Concepts	
Cause and Effect Empirical evidence is claims about specific 	required to differentiate between cause and correlation and make causes and effects.	Online: Science and Engineering Practices Handbook

18T NGSS Correlations

THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

CCSS ELA/Literacy	
RST.11-12.1, RST.11-12.7, RST.9-10.8, RST.11-12.8.a–e	Online: Applying Practices: Investigating Group Behavior STEM Unit Project 1 STEM Unit Project 5

HS-LS3	Heredity: Inheritance and Variation of Traits	
() HS-LS3-1.	Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]	Online: Applying Practices: <i>Meiosis</i> STEM Unit Project 2
SEP Science and	Engineering Practices	
Asking Questions and • Ask questions that a	d Defining Problems rise from examining models or a theory to clarify relationships.	Online: Science and Engineering Practices Handbook: Practice 1
DCI Disciplinary (Core Ideas	
the DNA that contain	Function etic information in the form of DNA molecules. Genes are regions in the instructions that code for the formation of proteins. (secondary his Disciplinary Core Idea is also addressed by HS-LS1-1.)	Student Edition: 156–157, 167, 186, 222, 231, 244 Q1, 288–295 296–298, 299–305, 305 Q1, 306–314, 330–331
chromosome is a par characteristics are ca but the genes used (DNA codes for a pro	writance of Traits onsists of a single very long DNA molecule, and each gene on the ticular segment of that DNA. The instructions for forming species' arried in DNA. All cells in an organism have the same genetic content, expressed) by the cell may be regulated in different ways. Not all tein; some segments of DNA are involved in regulatory or structural have no as-yet known function.	Student Edition: 222, 231, 288–295, 296–298, 296 Fig 9 Caption question, 301, 305 Q3, 308, 309 Get It?, 314 Q5, 330, 331, 338, 338 Q5
CCC Crosscutting	Concepts	
Cause and Effect • Empirical evidence is claims about specific	s required to differentiate between cause and correlation and make causes and effects.	Online: Science and Engineering Practices Handbook
CCSS ELA/Literacy		
RST.11-12.1, RST.11-12.9		Online: Applying Practices: <i>Meiosis</i> STEM Unit Project 2
		A

NGSS Correlations **19T** THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

HS-LS3	Heredity: Inheritance and Variation of Traits	
HS-LSS3-2.	Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.]	Online: Applying Practices: <i>Investigating</i> <i>Genetic Variation</i> STEM Unit Project 3
SEP Science and	Engineering Practices	·
scientific knowledge,	laim based on evidence about the natural world that reflects and student-generated evidence.	Online: Science and Engineering Practices Handbook: Practice 6
DCI Disciplinary (Core Ideas	
meiosis (cell division) variation. Although D occur and result in m	hits n, chromosomes can sometimes swap sections during the process of thereby creating new genetic combinations and thus more genetic NA replication is tightly regulated and remarkably accurate, errors do utations, which are also a source of genetic variation. Environmental e mutations in genes, and viable mutations are inherited.	Student Edition: 233–236, 261, 309–314, 312 Get It?, 314 Q2, Q4, 384
occurrences of traits	s also affect expression of traits, and hence affect the probability of in a population. Thus the variation and distribution of traits observed netic and environmental factors.	Student Edition: 281–282, 282 Q5
CCC Crosscutting	Concepts	·
Cause and Effect • Empirical evidence is claims about specific	required to differentiate between cause and correlation and make causes and effects.	Online: Science and Engineering Practices Handbook
CCSS Mathematics		1
MP.2		Online: Applying Practices: <i>Investigating</i> <i>Genetic Variation</i> STEM Unit Project 3
CCSS ELA/Literacy		
RST.11-12.1, RST.11-12.9, V	WHST.9–12.1.a–e	Online: Applying Practices: <i>Investigating</i> <i>Genetic Variation</i>

	Heredity: Inheritance and Variation of Traits	
() HS-LS3-3.	Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]	Online: Applying Practices: <i>Punnett</i> <i>Squares</i> STEM Unit Project 3
SEP Science and	Engineering Practices	
slope, intercept, and	preting Data tatistics and probability (including determining function fits to data, I correlation coefficient for linear fits) to scientific and engineering ems, using digital tools when feasible.	Online: Science and Engineering Practices Handbook: Practice 4
DCI Disciplinary	Core Ideas	
occurrences of traits	raits rs also affect expression of traits, and hence affect the probability of in a population. Thus the variation and distribution of traits observed enetic and environmental factors.	Student Edition: 281–282, 282 Q5
CCC Crosscutting	g Concepts	
Scale, Proportion, ar	nd Quantity	Online:
	s used to examine scientific data and predict the effect of a change in other (e.g., linear growth vs. exponential growth).	Science and Engineering Practices Handbook
one variable on and Connections to Natu Science is a Human	s used to examine scientific data and predict the effect of a change in other (e.g., linear growth vs. exponential growth). ure of Science Endeavor nces have influenced the progress of science and science has	Science and Engineering
one variable on and Connections to Natu Science is a Human • Technological advance influenced advance	s used to examine scientific data and predict the effect of a change in other (e.g., linear growth vs. exponential growth). ure of Science Endeavor nces have influenced the progress of science and science has	Science and Engineering Practices Handbook Online: Science and Engineering
one variable on and Connections to Natu Science is a Human • Technological advance • Science and engine	s used to examine scientific data and predict the effect of a change in other (e.g., linear growth vs. exponential growth). ure of Science Endeavor nces have influenced the progress of science and science has is in technology. eering are influenced by society and society is influenced by science	Science and Engineering Practices Handbook Online: Science and Engineering Practices Handbook Online: Science and Engineering

HS-LS4	Biological Evolution: Unity and Diversity	
() HS-LS4-1.	Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.]	Online: <i>Applying Practices: Evidence for</i> <i>Evolution</i> STEM Unit Project 4 STEM Unit Project 5
SEP Science and I	Engineering Practices	
Communicate scientific development and the	, and Communicating Information fic information (e.g., about phenomena and/or the process of e design and performance of a proposed process or system) in uding orally, graphically, textually, and mathematically).	Online: Science and Engineering Practices Handbook: Practice 8
 A scientific theory is a based on a body of fa experiment and the set 	a, Mechanisms, and Theories Explain Natural Phenomena a substantiated explanation of some aspect of the natural world, acts that have been repeatedly confirmed through observation and cience community validates each theory before it is accepted. If new ed that the theory does not accommodate, the theory is generally	Online: Science and Engineering Practices Handbook: Practice 6 Student Edition: 11
DCI Disciplinary C	Core Ideas	'
 Genetic information, I sequences vary amor branching that produce sequences of different 	ommon Ancestry and Diversity like the fossil record, provides evidence of evolution. DNA ng species, but there are many overlaps; in fact, the ongoing ces multiple lines of descent can be inferred by comparing the DNA nt organisms. Such information is also derivable from the similarities nino acid sequences and from anatomical and embryological	Student Edition: 331, 360 Get It?, 362 Q4, 373–378, 380 Q3 and Q4, 404, 434–436, 436 CCC activity
CCC Crosscutting	Concepts	
	y be observed at each of the scales at which a system is studied and e for causality in explanations of phenomena.	Online: Science and Engineering Practices Handbook
Connections to Nature	e of Science	Online:
Scientific knowledge	Assumes an Order and Consistency in Natural Systems is based on the assumption that natural laws operate today as they ey will continue to do so in the future.	Science and Engineering Practices Handbook Student Edition: 11–16

1

CCSS Mathematics	
MP.2	Online: Applying Practices: Evidence for Evolution STEM Unit Project 4 STEM Unit Project 5
CCSS ELA/Literacy	
RST.11-12.1, WHST.9–12.2.a–e, WHST.9–12.9, SL.11-12.4	Online: Applying Practices: Evidence for Evolution STEM Unit Project 4 STEM Unit Project 5

HS-LS4	Biological Evolution: Unity and Diversity		
NS-LS4-2.	Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. [Clarification Statement: Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning.] [Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and co-evolution.]	Online: Applying Practices: <i>Pest</i> <i>Management and Natural</i> <i>Selection</i> STEM Unit Project 4	
SEP Science and	SEP Science and Engineering Practices		
 Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 		Online: Science and Engineering Practices Handbook: Practice 6	

Continued from previous page.

DCI Disciplinary Core Ideas		
 LS4.B: Natural Selection Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. 	Student Edition: 370–372, 372 Q3 and Q4, 384, 723	
 LS4.C: Adaptation Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment's limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. 	Student Edition: 370–372, 372 Q3, 381–391	
CCC Crosscutting Concepts		
 Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. 	Online: Science and Engineering Practices Handbook	
CCSS Mathematics	1	
MP.2, MP.4	Online: Applying Practices: Pest Management and Natural Selection STEM Unit Project 4	
CCSS ELA/Literacy		
RST.11-12.1, WHST.9–12.2.a–e, WHST.9–12.9, SL.11-12.4	Online: Applying Practices: <i>Pest</i> <i>Management and Natural</i> <i>Selection</i> STEM Unit Project 4	

HS-LS4	Biological Evolution: Unity and Diversity	
() HS-LS4-3.	Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.]	Online: Applying Practices: <i>Could You</i> <i>Beat Natural Selection Using</i> <i>Camouflage?</i> STEM Unit Project 4

24T NGSS Correlations

THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

SEP Science and Engineering Practices	
 Analyzing and Interpreting Data Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. 	Online: Science and Engineering Practices Handbook: Practice 4
DCI Disciplinary Core Ideas	
 LS4.B: Natural Selection Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. 	Student Edition: 370–372, 372 Q3 and Q4, 384, 723
 The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. 	Student Edition: 370–372, 384–386, 391 Q4, 723
 Adaptation also means that the distribution of traits in a population can change when conditions change. 	Student Edition: 378–380, 384–386, 391 Q4, 410, 458, 458 Get It?
CCC Crosscutting Concepts	
PatternsDifferent patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.	Online: Science and Engineering Practices Handbook
CCSS Mathematics	·
MP.2	Online: Applying Practices: Could You Beat Natural Selection Using Camouflage? STEM Unit Project 4
CCSS ELA/Literacy	
RST.11-12.1, WHST.9–12.2.a–e, WHST.9–12.9	Online: Applying Practices: Could You Beat Natural Selection Using Camouflage? STEM Unit Project 4

HS-LS4	Biological Evolution: Unity and Diversity	
HS-LS4-4.	Construct an explanation based on evidence for how natural selection leads to adaptation of populations. [Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.]	Online: Applying Practices: <i>Can Scientists</i> <i>Model Natural Selection?</i> STEM Unit Project 4 STEM Unit Project 5
SEP Science and	Engineering Practices	
 Construct an explana of sources (including review) and the assu 	ntions and Designing Solutions ation based on valid and reliable evidence obtained from a variety students' own investigations, models, theories, simulations, peer mption that theories and laws that describe the natural world operate he past and will continue to do so in the future.	Online: Science and Engineering Practices Handbook: Practice 6
DCI Disciplinary	Core Ideas	·
are anatomically, beh in a specific environr in a population that h	ds to adaptation, that is, to a population dominated by organisms that haviorally, and physiologically well suited to survive and reproduce nent. That is, the differential survival and reproduction of organisms have an advantageous heritable trait leads to an increase in the uals in future generations that have the trait and to a decrease in the uals that do not.	Student Edition: 370–372, 372 Q4, 378–380, 384–386, 410, 723
CCC Crosscutting	Concepts	
Cause and Effect Empirical evidence is claims about specific 	required to differentiate between cause and correlation and make causes and effects.	Online: Science and Engineering Practices Handbook
Scientific knowledge	e of Science Assumes an Order and Consistency in Natural Systems is based on the assumption that natural laws operate today as they any will continue to do so in the future.	Online: Science and Engineering Practices Handbook Student Edition: 11–16
CCSS Mathematics		

CCSS ELA/Literacy		
RST.11-12.1, WHST.9–12.2.a–e, WHST.9–12.9	Online:	
	Applying Practices: Can Scientists Model Natural	
	Selection?	
	STEM Unit Project 4	
	STEM Unit Project 5	

HS-LS4 Biological Evolution: Unity and Diversity		
HS-LS4-5.	Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.]	Online: Applying Practices: <i>Evaluating</i> <i>Impacts of Environmental Change</i> <i>on Populations</i> STEM Unit Project 5
SEP Science and	Engineering Practices	
 Engaging in Argument Evaluate the evidence the merits of argumet DCI Disciplinary (e behind currently accepted explanations or solutions to determine nts.	Online: <i>Science and Engineering</i> <i>Practices Handbook:</i> Practice 7
Der Disciplinary (
have thus contributed distinct species as po	ical environment, whether naturally occurring or human induced, d to the expansion of some species, the emergence of new opulations diverge under different conditions, and the decline—and ction—of some species.	Student Edition: 98; 105–112; 110 Get It?; 112 Q1, 2, 3; 378; 385; 484–486; 573; 575; 577; 580
altered environment.	nct because they can no longer survive and reproduce in their If members cannot adjust to change that is too fast or drastic, the pecies' evolution is lost.	Student Edition: 98, 105–112, 112 Q1, 378, 458, 458 Get It?, 573, 575, 577, 580
CCC Crosscutting	Concepts	
Cause and Effect		Online:
• Empirical evidence is claims about specific	s required to differentiate between cause and correlation and make causes and effects.	Science and Engineering Practices Handbook

Continued from previous page.

CCSS Mathematics	
MP.2	Online: Applying Practices: Evaluating Impacts of Environmental Change on Populations STEM Unit Project 5
CCSS ELA/Literacy	
RST.11-12.8, WHST.9–12.9	Online: Applying Practices: Evaluating Impacts of Environmental Change on Populations STEM Unit Project 5

HS-LS4	Biological Evolution: Unity and Diversity	
() HS-LS4-6.	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]	Online: Applying Practices: <i>Cleaning Up</i> <i>an Oil Spill</i> STEM Unit Project 1
SEP Science and I	Engineering Practices	
Using Mathematics and Computational Thinking Online: • Create or revise a simulation of a phenomenon, designed device, process, or system. Science and Engineering Practices Handbook: Practices		
DCI Disciplinary Core Ideas		
 LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline–and sometimes the extinction–of some species. 		Student Edition: 98; 105–112; 110 Get It?; 112 Q1, 2, 3; 378; 484–486; 573; 575; 577; 580
 LS4.D: Biodiversity and Humans Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (Note: This Disciplinary Core Idea is also addressed by HS-LS2-7.) 		Student Edition: 6, 55, 56, 70, 101–104, 104 Q1, 105–112, 113–120, 573, 575, 577, 580

DCI Disciplinary Core Ideas		
 ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS4-6) 	Online: Science and Engineering Practices Handbook: Practice 1, Practice 6 Student Edition: 115–120, 120 Q4	
• Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6)	Online: Science and Engineering Practices Handbook: Practice 2, Practice 5, Practice 6 Student Edition: 26, 26 Get It?, p 30 CCC activity	
CCC Crosscutting Concepts		
Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. CCSS ELA/Literacy	Online: Science and Engineering Practices Handbook	
WHST.9–12.5, WHST.9–12.7	Online: Applying Practices: <i>Cleaning Up</i> <i>an Oil Spill</i> STEM Unit Project 1	

HS-ETS1	ETS1 Engineering Design		
HS-ETS1-1.	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	Online: Applying Practices: <i>Engineer a</i> <i>Better World: Analyze a Major</i> <i>Global Challenge</i> STEM Unit Project 1	
SEP Science and Engineering Practices			
Asking Questions andAnalyze complex real solutions.	I Defining Problems I-world problems by specifying criteria and constraints for successful	Online: Science and Engineering Practices Handbook: Practice 1	
DCI Disciplinary C	Core Ideas		
Criteria and constrain taking issues of risk n	Delimiting Engineering Problems Its also include satisfying any requirements set by society, such as nitigation into account, and they should be quantified to the extent In such a way that one can tell if a given design meets them.	<i>Science and Engineering Practices Handbook:</i> Practice 1, Practice 6	

NGSS Correlations **29T** THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

Continued from previous page.

DCI Disciplinary Core Ideas		
• Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities.	Online: Science and Engineering Practices Handbook: Introduction, All Practices	
	Student Edition: 6, 10 Q3, 87, 113-120, 215	
CCC Crosscutting Concepts		
Connections to Engineering, Technology, and Applications of Science	Online:	
 Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including 	Science and Engineering Practices Handbook	
some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.	Student Edition: 6, 15–16, 17, 45, 215, 315, 339, 499, 640, 665	

HS-ETS1	Engineering Design		
HS-ETS1-2.	Design a solution to a complex real-world problem by breaking it down into smaller, moremanageable problems that can be solved through engineering.	Online: Applying Practices: <i>Engineer a</i> <i>Better World: Design a Solution</i>	
		STEM Unit Project 1 STEM Unit Project 6	
SEP Science and Engineering Practices			
Constructing Explanat	Constructing Explanations and Designing Solutions Online:		
 Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. 		<i>Science and Engineering</i> <i>Practices Handbook:</i> Practice 6	
DCI Disciplinary Core Ideas			
ETS1.C: Optimizing the Design Solution Online:			
-	e broken down into simpler ones that can be approached systematically, he priority of certain criteria over others (trade-offs) may be needed.	Science and Engineering Practices Handbook: Practice 1, Practice 6	

HS-ETS1	Engineering Design	
HS-ETS1-3.	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	Online: Applying Practices: <i>Engineer a</i> <i>Better World: Evaluate a Solution</i> STEM Unit Project 1 STEM Unit Project 2 STEM Unit Project 6

30T NGSS Correlations THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

	tions and Designing Solutions	Online:
 Constructing Explanations and Designing Solutions Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. 		Science and Engineering Practices Handbook: Practice 6
DCI Disciplinary		
 ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. 		Online: Science and Engineering Practice Handbook: Practice 1, Practice 6 Student Edition: 15–20, 120 Q4
CCC Crosscutting	Concepts	
 Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. 		Online: Science and Engineering Practices Handbook
		Student Edition: 6, 15–16, 17, 45 215, 315, 339, 499, 640, 665
HS-ETS1	Engineering Design	
💫 HS-ETS1-4 .	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous	Online:
	criteria and constraints on interactions within and between systems relevant to the problem.	Applying Practices: Engineer a Better World: Use a Computer Simulation
	criteria and constraints on interactions within and between	Better World: Use a Computer
SEP Science and	criteria and constraints on interactions within and between	Better World: Use a Computer Simulation
Constructing Explana Use mathematical mo	criteria and constraints on interactions within and between systems relevant to the problem.	Better World: Use a Computer Simulation
Constructing Explana Use mathematical mo	criteria and constraints on interactions within and between systems relevant to the problem. Engineering Practices tions and Designing Solutions odels and/or computer simulations to predict the effects of a design and/or the interactions between systems.	Better World: Use a Computer Simulation STEM Unit Project 1 Online: Science and Engineering
Constructing Explana Use mathematical me solution on systems a DCI Disciplinary ETS1.B: Developing P Both physical models engineering design p running simulations t	criteria and constraints on interactions within and between systems relevant to the problem. Engineering Practices tions and Designing Solutions odels and/or computer simulations to predict the effects of a design and/or the interactions between systems. Core Ideas ossible Solutions and computers can be used in various ways to aid in the process. Computers are useful for a variety of purposes, such as o test different ways of solving a problem or to see which one is most cal; and in making a persuasive presentation to a client about how a	Better World: Use a Computer Simulation STEM Unit Project 1 Online: Science and Engineering
Constructing Explana Use mathematical me solution on systems a DCI Disciplinary TS1.B: Developing P Both physical models engineering design p running simulations t efficient or economic	criteria and constraints on interactions within and between systems relevant to the problem. Engineering Practices tions and Designing Solutions odels and/or computer simulations to predict the effects of a design and/or the interactions between systems. Core Ideas ossible Solutions s and computers can be used in various ways to aid in the process. Computers are useful for a variety of purposes, such as o test different ways of solving a problem or to see which one is most al; and in making a persuasive presentation to a client about how a et his or her needs.	Better World: Use a Computer Simulation STEM Unit Project 1 Online: Science and Engineering Practices Handbook: Practice 5 Conline: Science and Engineering Practices Handbook: Practice 2 Practice 5, Practice 6 Student Edition:

NGSS Correlations **31T** THIS INFORMATION IS PROVIDED FOR INDIVIDUAL EDUCATIONAL PURPOSES ONLY AND MAY NOT BE DOWNLOADED OR FURTHER DISTRIBUTED.

EARTH SCIENCE INTEGRATION

HS-ESS1	Earth's Place in the Universe	
HS-ESS1-5	Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages, oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading), and the ages of North American continental crust increasing with distance away from a central ancient core (a result of past plate interactions).]	Online: Applying Practices: <i>How old are</i> <i>crustal rocks</i> ? STEM Unit Project 4 Interactive Content placed at Module 13 Lesson 1
HS-ESS1-6	Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]	Online: Applying Practices: <i>Earth's</i> <i>Formation and Early History</i> STEM Unit Project 2 Interactive Content placed at Unit 2

HS-ESS2	Earth's Systems		
HS-ESS2-5	Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]	Online: Applying Practices: Effects of Water on Earth's Processes STEM Unit Project 4 Interactive Content placed at Module 6 Lesson 3	

HS-ESS2-7	Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.	Online: Applying Practices: <i>The</i>
	[Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other	Coevolution of Living Things and the Atmosphere
	systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples	STEM Unit Project 2
	include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial	Interactive Content placed at Module 2 Lesson 1
	life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition	
	along coastlines and provided habitats for the evolution of new life forms.]	

HS-ESS3	Earth and Human Activity	
HS-ESS3-1	Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting, and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]	Online: Applying Practices: Influence of Natural Resources, Hazards, and Changes in Climate STEM Unit Project 4 Interactive Content placed at Module 15 Lesson 3
HS-ESS3-4	Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]	Online: STEM Unit Project 2

EARTH SCIENCE INTEGRATION

Continued from previous page.

HS-ESS3-5	Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]	Online: Applying Practices: <i>Forecasting</i> <i>Climate Change</i> STEM Unit Project 2
HS-ESS3-6	Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]	Online: Applying Practices: <i>Exploring</i> <i>Relationships: Climate Change</i> <i>and Human Activity</i> STEM Unit Project 2 Interactive Content placed at Unit 2