
Foundations of Program
m

ing
Softw

are Engineering

Software
Engineering

Foundations
of Programming

Foundations of Programming

Software Engineering

Design, Develop, and Innovate in the Digital World
Imagine creating software that connects people, solves
problems, and enhances lives. What if you could master the
principles of software engineering and use them to design
innovative applications? From understanding programming
languages to building accessible apps, this course equips
you with the tools to excel in the digital age.

Foundations of Programming: This course introduces
you to essential principles, programming languages, and
development tools. Explore the software prototyping
process, focusing on user interaction and creating functional
prototypes. Learn to design mobile applications using MIT
App Inventor, adding elements, and programming features
that bring your ideas to life. Delve into software accessibility
and digital inclusion, mastering techniques to test, deploy,
and ensure your applications meet the needs of all users.

By the end of this course, you’ll have the skills to design,
prototype, and develop software applications with
confi dence. Whether crafting interactive prototypes,
programming mobile apps, or incorporating accessibility
features, you’ll be prepared to make a meaningful impact in
the world of technology. Empowered with knowledge and
hands-on experience, you’ll be ready to innovate and shape
the future of digital solutions.

SAMPLER

Software
Engineering

Foundations
of Programming

Foundations of Programming:
Software Engineering

Printed and distributed by McGraw Hill in association with Binary Logic SA.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without prior written permission from the publishers. No part of this work may be used
or reproduced in any manner for the purpose of training artificial intelligence technologies or systems.

Disclaimer: McGraw Hill is an independent entity from Microsoft® Corporation and is not affiliated
with Microsoft Corporation in any manner. Any Microsoft trademarks referenced herein are owned
by Microsoft and are used solely for editorial purposes. This work is in no way authorized, prepared,
approved, or endorsed by, or affiliated with, Microsoft.

Please note: This book contains links to websites that are not maintained by the publishers. Although
we make every effort to ensure these links are accurate, up-to-date, and appropriate, the publishers
cannot take responsibility for the content, persistence, or accuracy of any external or third-party
websites referred to in this book, nor do they guarantee that any content on such websites is or will
remain accurate or appropriate.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. The
publishers disclaim any affiliation, sponsorship, or endorsement by the respective trademark owners.

Windows is a registered trademark of Microsoft Corporation. “MIT” and “MIT App Inventor” are
trademarks of the Massachusetts Institute of Technology. “Python” and the Python logos are
registered trademarks of the Python Software Foundation. Jupyter is a registered trademark of
Project Jupyter. The above companies or organizations do not sponsor, authorize, or endorse this
book, nor is this book affiliated with them in any way.

Cover Credit: © dolgachov/123rf

Copyright © 2026 Binary Logic SA MHID: 1265466068 ISBN: 9781265466060

mheducation.com binarylogic.net

Contents

1. Software Engineering . 5
Lesson 1 Principles of Software Engineering . 7
 Exercises . 19
Lesson 2 Programming Languages and

 Languages Processors . 22
 Exercises . 32
Lesson 3 Software Development Tools . 34
 Exercises . 45

2. Prototyping . 49
Lesson 1 Analysis . 51
 Exercises . 68
Lesson 2 Interaction Between the User and the Computer 71
 Exercises . 78
Lesson 3 Creating a Prototype . 80
 Exercises . 93

3. Developing Applications with App Inventor 97
Lesson 1 Introduction to MIT App Inventor . 99
 Exercises . 124
Lesson 2 Adding More Elements to the App . 125
 Exercises . 142
Lesson 3 Programming the Mobile App . 143
 Exercises . 174

4. Software Accessibility and Digital Inclusion 177
Lesson 1 Testing and Deploying Applications . 179
 Exercises . 184
Lesson 2 Digital Inclusion . 186
 Exercises . 194
Lesson 3 Accessibility Features in an Application . 196
 Exercises . 219

1

Software
Engineering

C
op

yr
ig

ht
 ©

 B
in

ar
y

Lo
gi

c
SA

 
sc

yt
he

r5
/12

3r
f

A Brief History of the Development
Programming Languages
Many things have changed since the creation of the first computer
to the present day. Computer components and technologies have
evolved greatly, as have advanced processing capabilities. Despite
this, the concepts of computer operation formulated by von
Neumann in 1945 still apply.

Hardware

Machine Language

Assembly Language

High-Level Language

Fourth-Generation Language

Machine language
For a computer to perform any required function, it must receive
instructions in the form of binary numbers, consisting of 0s and 1s.
This form of communication, known as "machine language", is not
easily understood by humans. Machine languages are challenging
for programmers to use and implement because they require an
in-depth understanding of computer components and architecture.
Additionally, each Central Processing Unit (CPU) has its own unique
machine language, further complicating their application.

LESSON 2

Programming Languages
and Languages Processors

Programming languages
were invented for the

purpose of human-machine
communication.

A machine language program
is a sequence of binary bits,
which are the instructions
issued to the processor to
carry out basic operations.

22 Software Engineering1

Assembly language
Between machine language and high-level programming
languages, there is an intermediate language called assembly
language, also called symbolic programming language.

Assembly language is similar to machine language but is somewhat
easier to program as it allows the programmer to replace numbers
(0, 1) with symbols.

For example, in assembly language, the word ADD, followed by two numbers, is used for addition. This
is easy to understand and memorize for humans but must be translated into a series of bits in the
computer to carry out the required operation. This translation process is carried out by a special
program called the assembler.

Assembly language commands are made up of symbolic segments that correspond to machine
language commands.

Challenges of assembly language

• The use of assembly language makes it easier to program simple operations of unintelligible binary
sequences, but it is nevertheless considered a low-level language.

• The assembly language used varies depending on the architecture of each computer.
• Assembly language does not provide commands to perform more complex functions than simple

additions, multiplications, and comparisons, forcing the programmer to write long and complex
programs that are difficult to understand and debug.

• A program cannot be transferred from one computer to another of different architecture.

The following table presents a program with an addition written in a high-level programming language
and its equivalent in assembly and machine language for a computer with a 6502 8-bit CPU. The
high-level language program can be used on most computers, while the assembly and machine
translations will work only on a computer with the same CPU architecture.

Human comprehensible
assembly language

commands are converted into
corresponding sequences of
0s and 1s for the computer to

understand and execute.

Calculating an addition

High-level language Assembly language Machine language

sum = 0

LDA #0 10101001 00000000

STA sum 10000101 00000000

LDA sum 10100101 00000000

CLC 00011000 00000000

sum = sum + 5 ADC #5 01101001 00000101

STA sum 10000101 00000000

print (sum)
LDA sum 10100101 00000000

JSR print 00100000 11100001

23Software Engineering 1

High-level programming languages
The shortcomings of machine language and assembly language led to a concerted effort to achieve
better human-machine communication, which resulted in the emergence of the first high-level
programming language in the 1950s.

High-level programming languages use programming commands which resemble human language.
The resulting programs must be translated into machine language by the computer itself, using a
special program called the translator. Compilers and interpreters are types of translators used for
different types of programming languages.

FORTRAN COBOL PASCAL PYTHON C#

LISP BASIC PROLOG
C

JAVA
JAVASCRIPT

1957 1960 1970 1991 2000

1958 1964 1972 1995

The evolution of high-level programming languages
The developer chooses the programming language that allows the application to be easily developed
in a given environment to implement a software solution, but at the same time, the developer also
chooses the language based on their personal knowledge, skills, and preferences.

Each programming language has a unique set of reserved words (words that the language
understands) and a syntax that the programmer uses to write instructions.

Basic information of programming languages

Programming
language Developer Etymology Properties

FORTRAN IBM FORmula
TRANslation

Suitable for solving mathematical and
scientific problems but not suitable for
managing data files, for example.

LISP MIT LISt Processor A language for artificial intelligence.

COBOL CODASYL

Common
Business-
Oriented
Language

Suitable for developing commercial
applications and general management
applications.

BASIC Dartmouth
College

Beginner's All
Purpose
Symbolic
Instruction Code

A multi-domain programming language.

24 Software Engineering1

Features of high-level programming languages
High-level programming languages have several advantages over assembly language:

• They use logic and programming formulas that are understandable and close to human language.
• They are independent of the type of computer and can be used on any device with or without minor

modifications.
• Developers can learn high-level programming languages more easily and quickly.
• Software debugging and maintenance are much easier.

In general, high-level programming languages reduce the time and cost of software development
significantly compared to low-level programming languages.

Fourth-generation programming languages
Among high-level programming languages, you note that there are so-called fourth-generation
programming languages, which are usually abbreviated as 4GL. Fourth-generation programming
languages are closer to human language than other high-level languages and are accessible to people
without formal training as programmers because they require less coding.

Fourth-generation languages are more programmer-friendly and enhance programming efficiency by
using English-like words and phrases, as well as icons, symbolic representations, and graphical
interfaces when needed. The key to achieving efficiency with 4GL is compatibility between the tool and
the field of application.

Computer users in fourth-generation languages can make changes to the program in order to meet a
new need and have the ability to solve small problems by themselves. Multiple joint operations can be
performed using a single command entered by the programmer.

Scripting languages are a type of programming language typically interpreted rather than compiled.
They are used to automate repetitive tasks, simplify complex operations, and enable rapid prototyping
of software systems. Some common examples of scripting languages include JavaScript, Ruby, PHP,
and Perl. They often feature rich libraries and focus on productivity, making them ideal for tasks
requiring quick development and iteration. However, they may not be as efficient or scalable as
compiled languages and may not be suitable for performance-critical or resource-intensive applications.

For data operations, a user can create queries and reports using SQL for statistics and scientific
projects, and a mathematician or researcher can use software, such as SPSS, MATLAB, and LabVIEW, to
analyze this data.

PASCAL Professor
Nicholas Wirth

Named after the
mathematician
Blaise Pascal

It is famous for introducing structured
programming techniques. It adopts
program design in a systematic and
accurate manner.

C Dennis Ritchie
and Bell Labs

The C language
is named after a
prior language
named B

It is used for UNIX operating system
development and is suitable for different
operating systems.

JAVA Sun
Microsystems

Named after a
type of coffee
(Java)

It is an Object-Oriented programming
language used to develop applications
that can run on a wide range of computers
or different operating systems.

25Software Engineering 1

How computers understand programming
languages
Any program written in any programming language
is converted into machine language that can be
understood and executed by a computer, through
the use of special translation programs.

There are two ways to run programs written in a
high-level language. The most common is to
compile the program with a compiler, but in some
programming languages, an interpreter is used
instead.

Let's go over how to implement these two different
methods.

Classifications of Programming Languages
There are many classifications of programming languages. Languages can be classified in terms of the
type of commands used, such as procedural programming languages and object-oriented programming
languages.

Procedural programming uses a set of instructions to tell the computer what to do step by step.
Examples of procedural programming languages are COBOL, Fortran, and C.

In object-oriented programming, the program is divided into units called objects. Examples of object-
oriented programming languages are C#, C++, Java, and Python.

Programming languages can also be classified according to what they are used for:

1. General programming languages: In theory, any general programming language can be used to solve
any problem, but in practice, each language is designed to solve a specific type of problem. These
languages are divided as follows:
• Science-oriented languages such as Fortran.
• Business-oriented languages such as COBOL.
• Multi-domain languages such as BASIC and Pascal.
• Operating system programming languages such as C.
• Artificial intelligence languages such as PROLOG.
• Specialized database management languages such as SQL.

2. Specialized languages, such as LISP, are used for a specific type of application such as robotics or
integrated circuits.

Compiler
A compiler is a computer program that
converts an entire block of code written
in a high-level programming language
into machine language, which is
understood by the computer's
processor.

Interpreter
An interpreter is a computer program
that converts each line of code from a
block of code written in a high-level
language into machine language and
sends it for execution directly before
moving on to the next line of code.

26 Software Engineering1

Program translation and linking process:

• The compiler accepts a program written in a high-level language as the input file (the source
code), and produces an equivalent machine language program called object code.

• The compiler cannot compile statements that refer to standard libraries or resources outside of
the source code, so the process will require an additional step of linking and converting those
statements.

• Another program called the Linker or Loader handles the linking process and links the object
code file with the standard library files, and produces the executable code, which is the final
program that the computer executes.

Target machine code

y = x + 3

Translation

Loading

Link all commands
together

x = 10

print(y)

The source code is the program
written in a high-level

programming language.

 Python
Source code

Compiler

27Software Engineering 1

Library files

if a<b

Lib ref

do while
z=x-y

Lib ref

11011001
Lib ref

00010111
10101011
Lib ref

11011001

01000100

00010111

10101011

11111100

11011001

01000100

00010111

10101011

11111100

Compiler Linker

Compilers and interpreters perform the same task, which is to convert the program written in the
high-level programming language into machine language, but in two different ways.

x = 10

y = x + 2

print(y)

Analysis - Check for errors

Send command 1 for execution

Analysis - Check for errors

Send command 2 for execution

Analysis - Check for errors

Send command n for execution

 Python
Source code

 Source Code Object Code Executable Code

Interpreter

28 Software Engineering1

Interpreted and Compiled Programming Languages
Most modern programming languages use compilers to produce optimized code quickly, but there are
some languages that still use interpreters when there is a need to create a simple program for which
speed is not the primary concern.

Compiled languages
The C, C++, C#, and Java programming languages use a compiler to build fast, reliable programs. The
executable code is created for each type of computer hardware, which means that developers have to
know what the end user's computer hardware is.

Interpreted languages
Legacy JavaScript, LISP, and BASIC use interpreters, which means that programs run slowly but their
source code can run on any computer that has a particular programming language's interpreter. For
example, a web application written in JavaScript can run on a Windows computer or an Android tablet
with a web browser that integrates the JavaScript interpreter.

Python

C
C++
C#
Java

LISP
BASIC
JavaScript

Python is both an interpreted and a compiled language. The Python application compiles
each line of code so that it can be read by the interpreter on the hardware

in use. The syntax used by the programmer doesn't change because the Python
application converts it into the correct form for the interpreter used on that hardware.

 Interpreter Compiler

29Software Engineering 1

Compiler vs Interpreter comparison

Compiler Interpreter

Main function

Converts the entire source code
written in a high-level programming
language into machine language, and
produces an executable program.

Converts the block of code into
machine language so that it
translates and then executes the
block of code, moving to the next
block while the program is running.

Input The compiler takes the entire source
code as input.

The interpreter takes one of the
source code instructions as input
each time.

Output The compiler generates and stores
an object code file as output.

The interpreter does not generate an
object code file.

Memory Requires more memory due to object
code generation. Less memory is required.

Implementation
process

The compilation process takes place
for the entire source code before
execution begins.

The interpretation process for each
code statement takes place in
parallel with the execution process.

Error checking

The compiler displays all language
errors and warnings when compiling
the program. You cannot run the
program until all errors are corrected.

The interpreter reads one line of
code and displays any errors in it.
This error must be corrected before
moving on to the next line.

Link files
Needs a program to associate the
object file with standard library files
to create the executable.

Does not need the link process, and
does not create an executable file.

Speed Availability of .exe file makes
execution faster.

The execution process is slower
because the executable file is not
available. The program is interpreted
again on each execution.

Dependence
on hardware
and operating
systems

The executable file generated by the
compiler depends on the target
hardware. It cannot run on different
CPU architectures or different
operating systems.

The interpreter is a hardware and
operating system that is independent.
For example, a Python interpreter
can run on Windows and Linux with
the same source code and give the
same results.

30 Software Engineering1

Dealing with Software Errors
Compilers and interpreters operate differently when they face errors and bugs in the source code.

Compiler:

1. Program creation.
2. The compiler will analyze and process all lines of code and make sure that they are correct.
3. If there is an error, an error message will appear.
4. If there is no error, the compiler will convert the source code into machine language.

Multiple code files will be associated with a single executable program (known as an EXE file).

Interpreter:

1. Program creation.
2. The interpreter reads one line of code and displays any syntax error. This error must be corrected

before moving on to the next line.
3. All the lines of the source code are executed line by line during program execution by the interpreter.

Correction of errors during the debugging process
The source code in its first version may often contain many errors, which are divided into three types:

• Logical errors: Errors in the logic of the program.
• Runtime errors: Errors that occur during the execution of the program.
• Syntax errors: Errors in the syntax of the code.

Logical errors and runtime errors only occur when the program is executed, while syntax errors occur
during compilation. The program is executed only if the source program contains no syntax errors.

Debugging syntax errors:

• In the first step, the compiler or interpreter detects syntax errors and presents messages
indicating the error and its location. Some of them can specify the cause of the error.

• The next step is to correct errors in the program.
• Finally, the corrected program compiles correctly, without any error messages.

31Software Engineering 1

1 What are the shortcomings of assembly language?

2 Analyze the role of high-level programming languages in software development
by identifying three key advantages. How do these advantages influence software
efficiency, scalability, and developer productivity?

3 For each project below, identify the most appropriate programming language
classification (science-oriented, business-oriented, multi-domain, operating
system programming, artificial intelligence, specialized database management,
or specialized languages) and provide reasoning based on the characteristics
of the language and its usage.

1. A scientific research team is creating a simulation to model complex chemical
reactions. The language must be able to perform heavy mathematical
computations and solve scientific equations efficiently. Which classification of
programming language is most suited to this project?

2. A team of database administrators is building a new database management
system for a company that handles millions of customer records. The
language needs to support efficient querying and management of large data
sets. Which classification of programming language is most appropriate here?

4 Choose the correct option to complete each sentence.

1. ______________ accepts the source program as input and produces an
equivalent machine language program called ______________.

A. The interpreter, object code

B. The compiler, object code

C. The source code, runtime errors

D. The compiler, syntax errors

32

EXERCISES

Software Engineering1

2. The ______________ used by the interpreter is less than that used by the
compiler.

A. object code

B. link

C. memory

D. syntax errors

3. Using ______________ is an advantage in terms of real-time debugging, but
program execution is slower.

A. the compiler

B. syntax errors

C. interpreted languages

D. object code

4. The compiler cannot convert statements that refer to ______________, so it
needs to concatenate and convert those statements.

A. syntax errors

B. standard libraries

C. memory

D. runtime errors

5. The executable can be created if there are no ______________ in the source
program.

A. runtime errors

B. syntax errors

C. memory issues

D. object code

6. Errors that occur during program execution are called ______________.

A. runtime errors

B. syntax errors

C. memory leaks

D. standard libraries

33Software Engineering 1

Software Development Tools and Programs
Developers use a wide range of tools to develop software applications, each of which has its
advantages and disadvantages. The programming process requires developers to be flexible and
creative to take full advantage of the capabilities of different software development tools to deliver
high-quality work for their clients.

Software development tools and programs are used to assist the software development team in various
tasks, including creating, modifying, and maintaining programs, as well as debugging and implementing
software tasks and development processes. There are also many specialized programs that provide or
support specific tasks in the stages of the software development cycle.

LESSON 3

Software Development Tools

Classification of software development tools

Software development tools Description

Code Editors Used to write and make changes to code.

Compilers and Linkers Translate programs into executable machine language.

Debuggers Help us correct errors in the software.

Project Builders Make sure that all the necessary files will be compiled and linked
to one final program.

Code Management Tools
Ensure that program files are not accidentally replaced when
multiple programmers are working on the same program
concurrently.

Integrated Development
Environment (IDE)

Provides programmers with an integrated software environment
that includes a text editor, compiler, linker, and debugger.

Profilers Usually give us a good idea of the program's needs and handling
of processor time and memory resources while running.

Network Analyzers Necessary when writing software for networking applications in
particular.

Database Explorer and
Analyzer

Allows dealing with databases and analyzing the performance of
specific database queries.

34 Software Engineering1

Features of code editors

• Error-checking
• Auto-completing and code suggestions
• Code snippets
• Syntax highlighting
• Facilitate navigation of code files and resources
• Adding more functionality via extensions

Code Editors
A code editor allows us to create and edit several connected programming language files, and
usually it can handle many different languages like HTML, CSS, JavaScript, PHP, Ruby, Python, C, etc.
Code editors use indents and different colors to format the code into code sections. This makes them
much more suitable for writing code than ordinary word processors and text editors like Microsoft
Word or Notepad.

There are many code editors that can be chosen by the programmer according to their preferences.
The only criterion for choosing an editor is the efficiency of that editor for the required task. Some
examples of code editors are:

• Sublime Text
• Atom
• Visual Studio Code
• Espresso
• Python IDLE

• Coda 2
• Notepad++
• Vim
• BBedit
• Ultraedit

35Software Engineering 1

Advantages and challenges of using code editors
Advantages

• They can rival the Integrated Development Environment (IDE) Editor for standard programming
tasks when appropriate extensions to support different programming languages are used.

• They are smaller and faster to load than IDEs.
• Their streamlined interfaces make it easy to focus on our code.

Challenges

• They lack a lot of editing features that only IDEs provide, such as smart editing.
• Users may need to configure the code editor with the appropriate extensions before use.

Integrated Development Environments
Integrated development environments (IDEs) are usually presented with their own built-in
applications, which include a number of software development tools such as an interpreter for use
during the program creation phase, and a compiler for finalizing and publishing the program.

Modern integrated development environments are not limited to providing just a compiler for the
programming language, but rather contain all the necessary programs and tools to help write and
implement code, and most importantly, to diagnose and correct programs. Among the most important
tools included in integrated programming environments are:

• File Explorer
• Code Editor
• Interpreter
• Compiler
• Linker
• Debugger
• Output Viewer

IDEs must include an editor dedicated to facilitating the creation of graphical objects, such as forms,
menus, and dialog boxes, in order to provide the developer with the appropriate tools to create the
code blocks related to these objects.

Features of IDEs

• Smart completion of code in the code editor.
• Integration with code management tools for version control.
• Advanced testing tools for debugging and validation
• Automatic linking of source code libraries.
• Tools for automating code creation and deployment.

All these tools and services are accessible through a unified user interface.

36 Software Engineering1

Examples of IDEs
In the past, most IDEs supported only one programming language and were usually created by the
software companies or organizations that created that specific language.

Today, most software development projects integrate different technologies and programming
languages, which requires IDE development environments that can support a wide range of languages.

For example, Microsoft Visual Studio supports C, C++, C#, VB.Net, Python, Ruby, Node.js, JavaScript,
HTML/CSS, etc.

Other popular IDE tools include NetBeans, Eclipse, Atom-IDE, Xcode, Android Studio, IntelliJ IDEA, that
and PyCharm.

Xcode is used to develop mobile application software for iOS devices. For Android devices, Android
Studio is used.

Advantages and challenges of using Integrated Development Environments (IDE)
Advantages

• Provide intelligent code completion and analysis tools for faster programming with less errors.
• They provide powerful code browsing and discovery tools and make it easy to access any part

of the program, no matter how large the project.
• They offer multiple ways to debug and test code without leaving the editor.
• They support many programming languages natively and provide many code navigation and

code analysis tools to facilitate work and productivity on large projects.

Challenges

• The interfaces are packed with a lot of features that can make them complicated and difficult
to use.

• They require a certain amount of training to use them correctly.
• Excessive functions often lead to slow performance.

Cloud software environments
Besides traditional software development environments, there are web-based cloud development
environments, such as Amazon Cloud9.

Cloud software environments provide the ability to work on your project from any computer, anywhere
in the world, as your software development project data resides in the cloud.

One of the main drawbacks of these environments is the need to connect to the Internet to access data
and do work.

Advantages of using cloud software development environments

• Access to software development tools from anywhere in the world.
• Possibility of using any device with a web browser.
• There are no requirements to download and install the software environment.
• Can facilitate collaboration between remote developers.

37Software Engineering 1

Programmers
spend most of

their programming
time in testing and

debugging, so
integration of the
code editor with
the compiler and
debugger is very

convenient. This is
the main feature

of the IDE.

Specialized Tools for Specific Stages of Software Development
Creating professional software solutions requires working in a team and using a variety of tools that are
not limited to the programming stage only but extend to the process as a whole.

There are many tools that can be used during the SDLC of a software product, and it can be difficult to
list all the software and other essentials needed to develop business software, but a selection of these
tools are described below.

Prototype creation
A software prototype is usually an organization chart, an image, or a set of images that represent the
functional elements of an application, or it may be a website used to map out applications or the
structure and functionality of the website.

Examples of tools used:

• Pencil
• Balsamiq Mockups
• Adobe Xd

Version control management—source code
The source code is subject to many modifications during the development process, and it may be
necessary to undo certain steps in the program or reuse code that has been changed or deleted. When
working in a team of programmers, two or more may need to work on the same files at the same time
and make changes to the same code.

The tool we can use to control this process is called "version control management" or "code
management". This tool enables the following:

1. Different team members can access the source code simultaneously without creating work conflicts.
2. Previous versions of code files can be kept for reference when some problems occur.

Version control uses a repository to record all changes made and creates a working copy of the
project's code files, sometimes called a checkout copy, when a programmer wants to work on the code.
All changes to the code are approved by the version control management software when changes to
the code are saved to the repository.

38 Software Engineering1

Examples of tools used:

• Git
• Subversion
• Mercurial
• Azure DevOps
• DiffMerge

Code deployment
Until a few years ago, it was easy to deploy an application since the compiled output of the program
was placed on a disk ready to use.

With the advent of the Internet, it became necessary to "publish" applications via the Internet, as
installable software through application stores or directly as web applications, and accordingly special
programs and tools appeared for publishing code on the web.

Examples of tools used:

• TeamCity
• Google Cloud Deployment Manager
• GitLab

• Jenkins
• AWS CodeDeploy
• Azure DevOps

Testing
Testing is not just debugging the code, but also includes testing the operation of the program and the
effectiveness of its use by a large number of users as well as performing security and other tests.

Examples of tools used:

• Apache JMeter
• Ghostlab
• Selenium
• Telerik Test Studio

• Azure DevOps
• IronWASP
• Zed Attack Proxy
• Wapiti

Information
"Branching" is a very useful feature of version control. It is the ability to copy all project code as a
new parallel project to allow testing or making changes to create an updated or new version of the
application. Parts of the new code can later be ported over to the original project to be used in the
original application as well.

39Software Engineering 1

Project management, collaboration, and issue tracking
As we have already learned, having a successful product requires keeping track of the entire process
and sharing knowledge with the entire team, especially when the team is expanding. This is where the
project management process becomes especially important.

Examples of tools used:

• Microsoft Teams for collaboration and communication.
• Scrum Trello for Agile Planning and Tracking.
• Jira to track specific issues and manage projects.
• MeisterTask for task management.
• Slack for collaboration and communication.
• Basecamp for managing projects and communicating with clients.
• Azure DevOps for Application Life Cycle Management (ALM)

Using Development Tools to Provide Different Solutions
Development teams rely on the tools we described earlier to produce a wide range of IT solutions,
many of which we use today to build applications of various kinds, such as:

• Web applications
• Smartphone Applications
• General applications
• Embedded systems

Building a web application
A web application is an interactive program that is built using HTML, CSS, and JavaScript web
technologies and which stores data on database servers. This application is used by users who perform
tasks over the Internet.

Stages of building a web application

1. The ideation stage

Before creating a web application, we must set the goals and main idea of the application.

2. Market research

You must do what is called market analysis to find out:

• Whether the target consumer has a need for this product or service.
• Whether a similar product or service exists.

3. Define web application functionality

You must identify functions that provide solutions to the problems of the target market.

4. Wireframing/prototyping

Wireframing is about designing the layout of your web application, and prototyping takes the
organization chart a step further by adding interactivity to test the functionality of the application.

40 Software Engineering1

5. Seek validation

At this stage, constructive opinions and feedback are collected from relevant parties and
potential users regarding the design.

6. Architect and build database

The data needed by programmers and users, as well as the tool for building the required
database, are determined at this stage.

There are many database design tools that are used for different purposes, but the nature of the
program and how the software solution is proposed for deployment will determine the choice of
a specific tool. Examples of tools used in designing and building databases are:

• MySQL
• SQL Server
• Amazon DynamoDB

• Azure SQL
• MongoDB
• Firebase

7. Building the front-end

The front-end is the visual element of your web application, and it represents the interface
between the user and the system. This interface represents what the user encounters and
interacts with.
Examples of tools used to build an optimized user interface for the web include:

• jQuery
• Reactjs
• Django

• Vue.js
• Angular

8. Building the back-end

The back-end is used to manage the data in the program. It refers to the databases and servers
as well as all other parts that are not visible to the user within the web application.

Building the back-end includes writing the core code that provides the application's functionality,
as well as preparing the database, the networks, and verifying the integration between the
different subsystems. Security and performance are particularly important. Examples of tools
used in building the back-end are:

• Express JS
• ASP.NET
• Ruby on Rails

• Flask
• Laravel
• Spring Boot

9. Hosting your web application

To run your web application on a specific server, a web hosting provider is required. The hosting
service may be simple and cheap, or it may be a large cloud computing service that allows your
cloud infrastructure to grow as the number of application users grows and your needs grow.

41Software Engineering 1

Web Server

Web hosting providers

Types Examples

Hosting Providers

• Bluehost

• HostGator

• GoDaddy

• Rackspace

Cloud Service Providers

• IBM Cloud

• Microsoft Azure

• Amazon Web Services

• Google Cloud Platform

• Alibaba Cloud

The cloud-ready application architecture
It is preferable to develop and deploy cloud-based web applications as a set of cloud services. This
process involves building data structures and then creating services, which are combined to form an
integrated system.

Web Application Architecture

Front-end

Contains App Logic
PHP, Javascript,

Python, Java

HTML, CSS,
Images

HTML, CSS, Javascript

MySQL,
PostgressSQL,

MariaDB

File System Database

What the User
Experience and
Interacts with:

User

Back-end

Request

Response

Collect
Data

Display
Results

42 Software Engineering1

The following diagram illustrates how to build a scalable and high-performance web application using
Microsoft Azure services. The same concept applies to all cloud computing providers.

The most important points to consider when using cloud application architecture are:

• The design of the application as a set of services.
• The separation of data, security, and performance standards.
• The requirements for communication through networks between application components.
• The scalability of the design.
• System security must be a core part of the application and not something to be planned for later.
• The physical distance from users is the most important consideration when choosing data centers.

Building an application for smartphones
The steps for creating a mobile application are similar to those for a web application but with some
special considerations. The mobile application is used on a phone, which typically has a small screen.
As the name suggests, the user will use the application "on the go", which means it is important to
consider the convenience of the interface. The user should be able to adjust the screen size and
access important information in a clear and simple way. It is also important to note that the difference in
devices leads to the need for responsive applications.

The two major mobile platforms are iOS and Android, each supporting a different but similar set of
technologies. For example, iOS recommends Xcode and Swift for software development, while Android
recommends Android Studio and Java.

These environments only allow building a final application that is ready to be published to the specific
application store in that environment. However, there are environments that try to solve this problem by
supporting application deployment to multiple stores.

With the following tools, a single application can be developed in a way that runs in different software
environments:

• Xamarin
• React Native

• Ionic
• Kotlin

43Software Engineering 1

Testing mobile applications is a big challenge, and it is difficult for a programmer or even a software
development company to have all the mobile devices available in the market to do the testing. This is
why online services offer simulations for a wide range of mobile devices, allowing applications to be
tested for compatibility across different devices.

Examples of tools used:

• Xamarin Test Cloud
• BrowserStack
• Firebase Test Lab

Building a general-purpose application
General purpose software is a type of application that can be used to perform many tasks, such as
traditional office software, including word processors, graphic design tools, Enterprise Resource
Planning (ERP) applications, or Customer Relationship Management (CRM) systems.

Despite the focus of new software development technologies on the web and mobile applications,
these traditional applications still retain their importance. The development of such applications relies
on ready-made and reusable code libraries, especially user interface components and reporting tools.

Building an embedded application
An embedded system is a special computer with a real-time operating system, often without a user
interface. Software on the embedded system handles sensors, actuators, and mechanisms for wired or
wireless data exchange. These programs must be reliable, secure, and fast. These applications require
real-time operating systems such as RTLinux, Windows 10 IoT, and QNX as well as programming
languages that are optimized for data processing, and network connectivity.

Examples of embedded systems are traffic lights, fire alarms, and home security systems.

Embedded systems can be programmed using the following programming languages:

• Assembly language (difficult and unsuitable for practical use).
• C, Embedded C, nesC, and Rust.
• Object-oriented languages such as C#, C++, and Java.

44 Software Engineering1

1 Choose the correct answer.

1. What is the purpose of a code editor?

A. Compile programs into machine code.

B. Debug software issues.

C. Write and modify code.

D. Analyze database performance.

2. Which tool translates programs into executable machine language?

A. Debuggers

B. Code Editors

C. Profilers

D. Compilers and Linkers

3. Which tool is essential for managing code written by multiple programmers?

A. Project Builders

B. Network Analyzers

C. Code Management Tools

D. Database Explorer

4. Which of the following provides an integrated environment with a text editor,
compiler, and debugger?

A. Code Management Tools

B. Integrated Development Environment (IDE)

C. Profilers

D. Project Builders

5. What is the primary function of a profiler?

A. To check for memory and processor usage during program execution.

B. To link different program files.

C. To manage the collaboration of multiple programmers.

D. To detect errors in a software program.

45

EXERCISES

Software Engineering 1

6. Which tool is necessary when writing software for web applications?

A. Debugger

B. Profiler

C. Network Analyzer

D. Project Builder

2 Identify the most important points to consider when using cloud application
architecture.

3 Explain the meaning of general purpose software and provide some examples.

4 List the basic steps for building a web application.

5 In your notebook, match the following terms with their correct descriptions:

1. Text editor

2. Version control software

3. IDE

4. Front-end

5. Back-end

A. A type of software used to modify text files.
B. Manages your data, databases, servers, and all components that the user can’t

observe inside the web application.
C. Enables previous versions of code files to be preserved for reference when

problems occur.
D. The visual elements of a web application; the interface between the user and

the system.
E. Contains all the software and tools needed to write and implement programs

and to diagnose and fix problems.

46 Software Engineering1

Planning the Development
of an Application

Imagine you need to create a mobile
application named "Community
Resources Αpplication" aimed at
helping elderly users access essential
community services.

This application focuses on connecting
seniors to local resources, like senior
centers and community help lines, in a
simple and accessible format.

1. Your job is to find details and images
about these places to include in the
application. After that, create a plan for
building the application using the
Software Development Life Cycle (SDLC).
In your plan, explain the steps needed to
make sure the application is developed in
an organized way.

2. Finally, make a presentation to explain the
key parts of the project. This includes the
application's goals, who will use it, its
features, and how it will make a difference
in your community by supporting local
projects and attractions.

47

PROJECT

1Software Engineering

C
op

yr
ig

ht
 ©

 B
in

ar
y

Lo
gi

c
SA

 
m

on
si

tj/
12

3r
f

KEY TERMS
- Agile Methodology

- Assembly Language

- Code Editor

- Compiler

- Development

- Embedded System

- Evaluation

- Executable Program

- Fourth-Generation
Language

- General-Purpose
Application

- High-Level Programming
Language

- Integrated Development
Environment (IDE)

- Interpreter

- Life Cycle

- Linker

- Machine Language

- Maintenance

- Mobile Application

- Rapid Application
Development (RAD)

- Software Development Life
Cycle (SDLC)

- Software Development
Methodologies

- Software Development Tool

- Testing

- Web Application

THIS UNIT COVERED HOW TO:
> explain the stages of the Software Development Life Cycle (SDLC).

> compare the advantages and challenges of Waterfall, RAD, and
Agile methods.

> describe di�erent programming languages, their history, and uses.

> explain how a computer processes programming languages and
how errors are handled through compilers or interpreters.

> identify software tools and their roles in each stage of software
development.

So
ft

w
ar

e
En

gi
ne

er
in

g
1 WRAP UP

48 Software Engineering1

Foundations of Program
m

ing
Softw

are Engineering

Software
Engineering

Foundations
of Programming

Foundations of Programming

Software Engineering

Design, Develop, and Innovate in the Digital World
 Imagine creating software that connects people, solves
problems, and enhances lives. What if you could master the
principles of software engineering and use them to design
innovative applications? From understanding programming
languages to building accessible apps, this course equips
you with the tools to excel in the digital age.

 Foundations of Programming: This course introduces
you to essential principles, programming languages, and
development tools. Explore the software prototyping
process, focusing on user interaction and creating functional
prototypes. Learn to design mobile applications using MIT
App Inventor, adding elements, and programming features
that bring your ideas to life. Delve into software accessibility
and digital inclusion, mastering techniques to test, deploy,
and ensure your applications meet the needs of all users.

By the end of this course, you’ll have the skills to design,
prototype, and develop software applications with
confi dence. Whether crafting interactive prototypes,
programming mobile apps, or incorporating accessibility
features, you’ll be prepared to make a meaningful impact in
the world of technology. Empowered with knowledge and
hands-on experience, you’ll be ready to innovate and shape
the future of digital solutions.

