
SAMPLER

For Review Purposes Only

Artificial
Intelligence 2

Foundations
of AI

For Review Purposes Only

Foundations of AI:
Artificial Intelligence 2

Printed and distributed by McGraw Hill in association with Binary Logic SA.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without prior written permission from the publishers. No part of this work may be used
or reproduced in any manner for the purpose of training artificial intelligence technologies or systems.

Disclaimer: McGraw Hill is an independent entity from Microsoft® Corporation and is not affiliated
with Microsoft Corporation in any manner. Any Microsoft trademarks referenced herein are owned
by Microsoft and are used solely for editorial purposes. This work is in no way authorized, prepared,
approved, or endorsed by, or affiliated with, Microsoft.

Please note: This book contains links to websites that are not maintained by the publishers. Although
we make every effort to ensure these links are accurate, up-to-date, and appropriate, the publishers
cannot take responsibility for the content, persistence, or accuracy of any external or third-party
websites referred to in this book, nor do they guarantee that any content on such websites is or will
remain accurate or appropriate.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. The
publishers disclaim any affiliation, sponsorship, or endorsement by the respective trademark owners.

Windows is a registered trademark of Microsoft Corporation. Tinkercad is a registered trademark
of Autodesk Inc. “Python” and the Python logos are registered trademarks of Python Software
Foundation. Jupyter is a registered trademark of Project Jupyter. CupCarbon is a registered trademark
of CupCarbon. OpenCV is a registered trademark of Open Source Vision Foundation. Ultimaker
Cura is a trademark of PIT Ultimaker Holding B.V. FreeCAD is a trademark of FreeCAD Project
Association. The above companies or organizations do not sponsor, authorize, or endorse this book,
nor is this book affiliated with them in any way.

Cover Credit: © ktsdesign/123rf

Copyright © 2026 Binary Logic SA	 MHID: 1265871787� ISBN: 9781265871789

mheducation.com	 binarylogic.net

2
For Review Purposes Only

1. �Artificial Intelligence Algorithms.. 5
Lesson 1	 DFS/BFS Algorithms.. 7
		 Exercises. 17
Lesson 2	 Rule-Based Decision-Making.. 18
		 Exercises. 34
Lesson 3	 Informed Search Algorithms.. 35
		 Exercises. 56

2. �Optimization and Decision-Making Algorithms. . . . 59
Lesson 1	 Resource Allocation Problem.. 61
		 Exercises. 74
Lesson 2	 Resource Scheduling Problem.. 76
		 Exercises. 88
Lesson 3	 Route Optimization.. 90
		 Exercises. 101

3. �AI and Robotics.. 105
Lesson 1	 Applications of Robotics I. 107
		 Exercises. 121
Lesson 2	 Applications of Robotics II.. 122
		 Exercises. 130

Contents

For Review Purposes Only

Applications of Search Algorithms
Search algorithms are key components of AI systems,
enabling the exploration of various possibilities to find
solutions to complex problems, with numerous
mainstream applications. Some examples of their
applications include:

• Robotics: A robot might use a search algorithm to find
its way through a maze or to locate an object in its
environment.

• E-commerce websites: Online shopping websites use
search algorithms to match customers' queries with
available products, filter results based on criteria such
as price, brand, and ratings, and suggest related
products.

• Social media platforms: Social media platforms use
search algorithms to present users the most relevant
posts, people, and groups based on keywords and user
interests.

• Enabling a machine to play games at a high level of
skill: A chess or Go-playing AI might use a search
algorithm to evaluate different moves and choose the
one that is most likely to lead to a win.

• GPS navigation systems: GPS navigation systems use
search algorithms to find the shortest and fastest route
between two locations, taking into account real-time
traffic data.

• File management systems: Search algorithms are used
in file management systems to quickly locate specific
files based on their names, contents, or other attributes.

Types and examples of search algorithms
There are two main types of search algorithms: uninformed and informed.

Uninformed search algorithms
Uninformed search algorithms, also known as blind search algorithms, have no additional information
about the states of a problem beyond those provided in the problem definition and perform an
exhaustive search of the search space by following a predetermined set of rules. The Breadth-first
search (BFS) and Depth-first search (DFS) techniques are examples of uninformed search algorithms.

Initial state

Final state

Robot

Object

LESSON 3

Informed Search Algorithms

35Artifi cial Intelligence Algorithms 1

For Review Purposes Only

For example, DFS begins at the root node of a tree or graph and always expands to the deepest
unvisited node. It proceeds in this manner until it has exhausted the entire search space by visiting all
available nodes. It then reports the best solution that was found during the search. The fact that DFS
always follows these rules and does not adjust its strategy regardless of what it discovers during its
search makes it an uninformed algorithm.

Another notable example in this family is Iterative Deepening Depth-first Search (IDDFS), which can be
viewed as a combination of the DFS and BFS algorithms, as it uses a depth-first strategy to iteratively
explore the full breadth of options up to a certain node.

Informed search algorithms
In contrast to the uninformed search algorithms, informed search
algorithms use information about the problem and the search space
to guide their search. Examples of such algorithms include:

• A* Search, which uses a heuristic function to estimate the distance
between each of the candidate nodes and the goal node. It then
expands the candidate node with the lowest estimate. The A*
Search algorithm is as good as its heuristic function. For example, if
the heuristic is guaranteed never to overestimate the actual
distance to the goal, then the algorithm is guaranteed to find the
optimal solution. Otherwise, the returned solution might not be the
best possible one.

• Dijkstra's algorithm, which expands the node with the actual
lowest distance to the goal in every step. Therefore, contrary to A*
Search, Dijkstra actually computes the real distance and does not
use heuristic estimates. While this makes Dijkstra slower than A*
Search, it also means that it is always guaranteed to find the
optimal solution (the shortest path from the start to the goal).

• Hill climbing, which starts by generating a random solution. It then
tries to iteratively improve this solution by making small changes
that increase a specific heuristic function. Even though this
approach is not guaranteed to find the optimal solution, it is easy to
implement and can be very efficient for certain types of problems.

Heuristic function
A function that ranks
alternatives in search
algorithms at each
branching stage depending
on available data to choose
which branch to pursue.

A* Search Dijkstra's algorithm

The purple cells
are the visited
cells, the green
cell is the start

location, the red
cell is the finish
location and the

yellow cells
represent the
found route.

36 Artifi cial Intelligence Algorithms1

For Review Purposes Only

 Informed Search Algorithms

In this lesson, you will explore some visual examples and Python implementations of BFS and A* Search
to demonstrate the differences between informed and uninformed search algorithms.

Creating maze puzzles in Python
Consider the following simple maze puzzle:

The maze is defined as a 3×3 grid. The
starting position is marked by a star in the
lower left corner of the maze. The goal is to
reach the target cell marked by the X. The
player can move to any free cell that is
adjacent to their current position.

Starting position

A cell is considered free unless it is already occupied by a block. For example, the above maze example
has three cells occupied by blocks. These blocks are colored dark gray and form an obstacle that the
player has to circumnavigate to get to the X. The player can move to any horizontally, vertically, or
diagonally adjacent free cell. For example:

The objective is to find the shortest
possible path and find it with the smallest
possible number of cell visits. Even
though a small 3×3 maze might seem
trivial to a human player, any intelligent
algorithmic solution has to work for
arbitrarily large and complex mazes. For
example, consider a massive
10,000×10,000 maze with millions of
blocks scattered in various complex
shapes.

The following Python code can be used
to create a dataset that represents the
example of the 3×3 grid.

import numpy as np

create a numeric 3×3 matrix full of zeros.
small_maze=np.zeros((3,3))

coordinates of the cells occupied by blocks
blocks=[(1, 1), (2, 1), (2, 2)]

for block in blocks:
 # set the value of block-occupied cells to be equal to 1
 small_maze[block]=1

small_maze

array([[0., 0., 0.],
[0., 1., 0.],
[0., 1., 1.]])

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

GoalObstacle

37Artifi cial Intelligence Algorithms 1

For Review Purposes Only

In this numeric representation of a maze, free and occupied cells are represented by zeros and ones,
respectively. The same code can also be easily updated to create arbitrarily large and complex mazes.
For example:

import random

random_maze=np.zeros((10,10))

coordinates of 30 random cells occupied by blocks
blocks=[(random.randint(0,9),random.randint(0,9)) for i in range(30)]

for block in blocks:
 random_maze[block]=1

import matplotlib.pyplot as plt # library used for visualization

def plot_maze(maze):
 ax = plt.gca() # create a new figure
 ax.invert_yaxis() # invert the y-axis to match the matrix
 ax.axis('off') # hide the axis labels
 ax.set_aspect('equal') # make sure the cells are square

 plt.pcolormesh(maze, edgecolors='black', linewidth=2,cmap='Accent')
 plt.show()

plot_maze(random_maze)

The following function can be used to visualize a maze:

Black squares are
occupied by blocks

and cannot be
crossed through.

Green squares are
not occupied and
can be traversed.

The generated
maze has a

randomized layout,
each time you run

the code, a
different maze will

be created.

38 Artifi cial Intelligence Algorithms1

For Review Purposes Only

Given any such maze, the following function can be used to return a list with all the adjacent accessible,
empties and neighbors of a specific cell:

This implementation assumes that all possible transitions from a cell to any horizontally, vertically, or
diagonally adjacent neighbor have the same cost of 1. This assumption will be revisited later in this
lesson, to allow for more complex scenarios with variable transition costs.

The get_accessible_neighbors() function is required by any search algorithm that attempts to solve the
maze. The following examples use the small 3×3 maze created above to verify that the function indeed
returns the correct neighbors for a given cell.

this cell is the northwest corner of the grid and has only 2 accessible
neighbors
get_accessible_neighbors(small_maze, (0,0))

[((0, 1), 1), ((1, 0), 1)]

the starting cell (in the southwest corner) has only 1 accessible neighbor
get_accessible_neighbors(small_maze, (2,0))

[((1, 0), 1)]

Given the ability to create mazes and to also retrieve the neighbors of any
cell in a maze, the next step is to implement search algorithms that can
solve a maze by finding the shortest path from a given start cell to a
given target cell.

0 1 2

0

1

2

0 1 2

0

1

2

Starting cell

Neighbor

def get_accessible_neighbors(maze:np.ndarray, cell:tuple):

list of accessible neighbors, initialized to empty
 neighbors=[]

 x,y=cell

 # for each adjacent cell position
 for i,j in [(x-1,y-1),(x-1,y),(x-1,y+1),(x,y-1),(x,y+1),(x+1,y-1),(x+1,y),
(x+1,y+1)]:

if the adjacent cell is within the bounds of the grid and is not occupied by a block
if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

neighbors.append(((i,j),1))

 return neighbors

x-1, y-1 x-1, y x-1, y+1

x, y-1 x, y x, y+1

x+1, y-1 x+1, y x+1, y+1

39Artifi cial Intelligence Algorithms 1

For Review Purposes Only

Using BFS to Solve Maze Puzzles
The bfs_maze_solver() function described in this section uses Breadth-first-search to solve maze
puzzles with a start and target cell. This implementation utilizes the get_accessible_neighbors()
function defined above to retrieve the neighboring cells that can be visited at any point during the
search.

Once BFS has found the target cell, the reconstruct_shortest_path() function in the following code, is
used to reconstruct and return the shortest path, working backward from target to start:

def reconstruct_shortest_path(parent:dict, start_cell:tuple, target_cell:tuple):

 shortest_path = []

 my_parent=target_cell # start with the target_cell

 # keep going from parent to parent until the search cell has been reached
 while my_parent!=start_cell:

 shortest_path.append(my_parent) # append the parent

 my_parent=parent[my_parent] # get the parent of the current parent

 shortest_path.append(start_cell) # append the start cell to complete the path

 shortest_path.reverse() # reverse the shortest path

 return shortest_path

The same reconstruct_shortest_path() function will be used to reconstruct the solution for the A*
Search algorithm described later in this lesson. Given the definitions of the get_accessible_neighbors()
and reconstruct_shortest_path() helper functions, the bfs_maze_solver() function can be implemented
as follows:

from typing import Callable # used to call a function as an argument of another function

def bfs_maze_solver(start_cell:tuple,
 target_cell:tuple,
 maze:np.ndarray,
 get_neighbors: Callable,
 verbose:bool=False): # by default, suppresses descriptive output text

 cell_visits=0 # keeps track of the number of cells that were visited during the search
 visited = set() # keeps track of the cells that have already been visited
 to_expand = [] # keeps track of the cells that have to be expanded

 # add the start cell to the two lists
 visited.add(start_cell)
 to_expand.append(start_cell)
 # remembers the shortest distance from the start cell to each other cell
 shortest_distance = {}

40 Artifi cial Intelligence Algorithms1

For Review Purposes Only

 # the shortest distance from the start cell to itself, zero
 shortest_distance[start_cell] = 0

 # remembers the direct parent of each cell on the shortest path from the start_cell to the cell
 parent = {}
 # the parent of the start cell is itself
 parent[start_cell] = start_cell

 while len(to_expand)>0:

next_cell = to_expand.pop(0) # get the next cell and remove it from the expansion list

if verbose:
print('\nExpanding cell', next_cell)

for each neighbor of this cell
for neighbor,cost in get_neighbors(maze, next_cell):

if verbose:
print('\tVisiting neighbor cell',neighbor)

cell_visits+=1

if neighbor not in visited: # if this is the first time this neighbor is visited

visited.add(neighbor)
to_expand.append(neighbor)
parent[neighbor]= next_cell
shortest_distance[neighbor]=shortest_distance[next_cell] + cost

target reached
if neighbor==target_cell:

get the shortest path to the target cell, reconstructed in reverse.
shortest_path = reconstruct_shortest_path(parent,
start_cell, target_cell)

return shortest_path, shortest_distance[target_cell],cell_visits

else: # this neighbor has been visited before

if the current shortest distance to the neighbor is longer than the shortest distance
to next_cell plus the cost of transitioning from next_cell to this neighbor

if shortest_distance[neighbor]>shortest_distance[next_cell] + cost:

parent[neighbor]=next_cell
shortest_distance[neighbor]=shortest_distance[next_cell]+cost

 # search complete but the target was never reached, no path exists
 return None,None,None

41Artifi cial Intelligence Algorithms 1

For Review Purposes Only

The function follows the standard BFS approach of exploring all options at the current depth prior to
moving to the next depth level. This implementation uses a set called visited and a list called to_expand.

The first includes all cells that have been visited at least once by the algorithm. The second list includes
all the cells that have not yet been expanded, which means that their neighbors have not been visited
yet. The algorithm also uses two dictionaries shortest_distance and parent. The first one maintains the
length of the shortest path from the start cell to each other cell, while the second one remembers the
parent of the cell on this shortest path.

Once the target cell has been reached and the search is complete, shortest_distance[target_cell] will
include the length of the solution: the length of the shortest path from start to target.

The following code uses the bfs_maze_solver() function to solve the small 3×3 maze defined above:

start_cell=(2,0) # start cell, marked by a star in the 3×3 maze
target_cell=(1,2) # target cell, marked by an "X" in the 3×3 maze

solution, distance, cell_visits=bfs_maze_solver(start_cell,
target_cell,
small_maze,
get_accessible_neighbors,
verbose=True)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Expanding cell (2, 0)
Visiting neighbor cell (1, 0)

Expanding cell (1, 0)
Visiting neighbor cell (0, 0)
Visiting neighbor cell (0, 1)
Visiting neighbor cell (2, 0)

Expanding cell (0, 0)
Visiting neighbor cell (0, 1)
Visiting neighbor cell (1, 0)

Expanding cell (0, 1)
Visiting neighbor cell (0, 0)
Visiting neighbor cell (0, 2)
Visiting neighbor cell (1, 0)
Visiting neighbor cell (1, 2)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 3
Number of cell visits: 10

42 Artifi cial Intelligence Algorithms1

For Review Purposes Only

BFS successfully finds the shortest path after 10 cells visits. The search process followed by BFS can be
more easily visualized if one considers a graph-based representation of the maze. Consider the
following example of a simple 3×3 maze and its graph representation:

The graph representation includes one node for every non-occupied cell. The label on the nodes
includes the coordinates of the corresponding matrix cell. There is an undirected edge from one node
to another if their corresponding cells are accessible from each other.

One important observation about BFS is that, for unweighted graphs, the first path that it finds between
the start cell and any other cell is guaranteed to be the one that includes the smallest number of visited
cells. This means that, as long as all edges on the graph have the same weight (or, equivalently, that all
transitions from one cell to another have the same cost), then the first path found to a specific node is
guaranteed to be the shortest path to that node. This is why the bfs_maze_solver() stops the search
and returns the result the first time it visits the target node.

However, this approach does not work for weighted graphs. Consider the following weighted version
of the graph representation for the 3×3 maze:

In this example, all edges that correspond to vertical or horizontal moves (south, north, west, east) have
a weight equal to 1. However, all edges that correspond to diagonal moves (southwest, southeast,
northwest, northeast), have a weight equal to 3. In this weighted case, the shortest path is clearly [(2,0),
(1,0), (0,0), (0,1), (0,2), (1,2)], which has a total distance of 1+1+1+1+1=5.

This more complex scenario can be encoded via the weighted version of the get_accessible_
neighbors() function that is described below.

def get_accessible_neighbors_weighted(maze:np.ndarray,
 cell:tuple,
 horizontal_vertical_weight:float,
 diagonal_weight:float):

0 1 2

0

1

2 2,0 0,1 0,2

1,0 0,0 1,2

0 1 2

0

1

2 2,0 0,1 0,2

1,0 0,0 1,21

1 1 3 1

1

3

43Artifi cial Intelligence Algorithms 1

For Review Purposes Only

 neighbors=[]
 x,y=cell

 for i,j in [(x-1,y-1), (x-1,y+1), (x+1,y-1), (x+1,y+1)]: # for diagonal neighbors

 # if the cell is within the bounds of the grid and it is not occupied by a block
 if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

 neighbors.append(((i,j), diagonal_weight))

 for i,j in [(x-1,y), (x,y-1), (x,y+1), (x+1,y)]: # for horizontal and vertical neighbors

 if i>=0 and j>=0 and i<len(maze) and j<len(maze[0]) and maze[(i,j)]==0:

 neighbors.append(((i,j), horizontal_vertical_weight))

 return neighbors

This function allows the user to assign a custom weight for horizontal and vertical moves, and a
different custom weight for diagonal moves. If this weighted version is then used by the BFS solver, the
results are as follows:

from functools import partial

start_cell=(2,0)
target_cell=(1,2)
horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell_visits=bfs_maze_solver(start_cell,
 target_cell,
 small_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 verbose=False)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 7
Number of cell visits: 6

44 Artifi cial Intelligence Algorithms1

For Review Purposes Only

As expected, the BFS solver mistakenly reports the exact same path as before, even though it has a
distance of 7 and is clearly not the shortest path. This is due to the uninformed nature of the BFS
algorithm, in which BFS does not take the weights into account when deciding which cell to expand
next. It simply applies the same breadth-first approach, which leads to the exact same solution that the
algorithm found for the unweighted version of the maze.

The next section describes how this weakness can be addressed via A* Search, an informed and more
intelligent search algorithm that adjusts its behavior based on the specified weights, and can therefore
solve mazes with both weighted and unweighted transitions.

Using A* Search to Solve Maze Puzzles
Similar to BFS, A* Search expands one cell at a time, by visiting each of its accessible neighbors.
However, while BFS uses a blind breadth-first approach to decide which cell to expand next, A* Search
expands the cell with the smallest estimated distance to the target cell, as computed by a heuristic
function.

The exact definition of the heuristic function depends on the application. For maze puzzles, a good
heuristic would provide an accurate estimate of how close a candidate cell is to the target. As long as
the employed heuristic is guaranteed to never overestimate the actual distance to the target (for
example, provide an estimate that is higher than the actual distance to the target), then the algorithm is
guaranteed to find the shortest possible path for both weighted and unweighted graphs. If a heuristic
sometimes overestimates distances, then A* Search will still return a solution, but it might not be the
best one possible.

The simplest possible heuristic that is guaranteed to never lead to overestimation is a simple function
that always produces an estimated distance of 1:

def constant_heuristic(candidate_cell:tuple, target_cell:tuple):

 return 1

While this is clearly an overly optimistic heuristic, it will never produce an
estimate that is higher than the actual distance, and will therefore lead
to the best possible solution. A more sophisticated heuristic that finds
the best solution much faster will be introduced later in this section.

The following function uses a given heuristic function to find the cell
that should be expanded next:

def get_best_candidate(expansion_candidates:set,
 shortest_distance:dict,
 heuristic:Callable):

 winner = None
 # best (lowest) distance estimate found so far. Initialized to a very large number
 best_estimate= sys.maxsize
 for candidate in expansion_candidates:

 # distance estimate from start to target, if this candidate is expanded next

0,1

1,0 0,01

1

45Artifi cial Intelligence Algorithms 1

For Review Purposes Only

candidate_estimate=shortest_distance[candidate]
+heuristic(candidate,target_cell)

if candidate_estimate < best_estimate:

winner = candidate
best_estimate=candidate_estimate

 return winner

The above implementation utilizes a for loop to iterate over all the candidates in the set and find the
best one. A more efficient implementation could use a priority queue that can produce the best
candidate without having to iterate over all candidates.

The get_best_candidate() function is used as a helper module by the astar_maze_solver() function
presented next. In addition to the heuristic function, this implementation also uses the get_accessible_
neighbors_weighted() and reconstruct_shortest_path() helper functions defined in the previous
section.

import sys

def astar_maze_solver(start_cell:tuple,
target_cell:tuple,
maze:np.ndarray,
get_neighbors: Callable,
heuristic:Callable,
verbose:bool=False):

 cell_visits=0

 shortest_distance = {}
 shortest_distance[start_cell] = 0

 parent = {}
 parent[start_cell] = start_cell

 expansion_candidates = set([start_cell])

 fully_expanded = set()

 # while there are still cells to be expanded
 while len(expansion_candidates) > 0:

best_cell = get_best_candidate(expansion_candidates,shortest_distance,
heuristic)

if best_cell == None: break

if verbose: print('\nExpanding cell', best_cell)

if the target cell has been reached, reconstruct the shortest path and exit
if best_cell == target_cell:

46 Artifi cial Intelligence Algorithms1

For Review Purposes Only

 shortest_path=reconstruct_shortest_path(parent,start_cell,target_cell)

 return shortest_path, shortest_distance[target_cell],cell_visits

 for neighbor,cost in get_neighbors(maze, best_cell):

 if verbose: print('\nVisiting neighbor cell', neighbor)

 cell_visits+=1

 # first time this neighbor is reached
 if neighbor not in expansion_candidates and neighbor not in fully_
expanded:

 expansion_candidates.add(neighbor)

 parent[neighbor] = best_cell # mark the best_cell as this neighbor's parent

 # update the shortest distance for this neighbor
 shortest_distance[neighbor] = shortest_distance[best_cell] + cost

 # this neighbor has been visited before, but a better (shorter) path to it has just been
found
 elif shortest_distance[neighbor] > shortest_distance[best_cell] + cost:

 shortest_distance[neighbor] = shortest_distance[best_cell] + cost

 parent[neighbor] = best_cell

 if neighbor in fully_expanded:

 fully_expanded.remove(neighbor)

 expansion_candidates.add(neighbor)

 # all neighbors of best_cell have been inspected at this point
 expansion_candidates.remove(best_cell)

 fully_expanded.add(best_cell)

 return None, None, None # no solution was found

Similar to bfs_maze_solver(), the above function also uses the same two dictionaries shortest_
distance and parent to keep the length of the shortest path from the start cell to each other cell and
the parent of the cell on this shortest path.

However, astar_maze_solver() follows a different approach to visiting and expanding cells. It uses the
expansion_candidates to keep track of all cells that could be expanded next. In every iteration, it uses
the get_best_candidate() function to select which of these candidates should be expanded next.

After the best_cell candidate has been selected, a for loop is used to visit all its neighbors. If a
neighbor is visited for the first time, then best_cell becomes the neighbor's parent on the shortest path.

47Artifi cial Intelligence Algorithms 1

For Review Purposes Only

The same happens if the neighbor has been visited before, but best_cell offers a shorter path than the
one previously found. If such a better path is indeed found, then the neighbor has to go back to the
expansion_candidates set, to reevaluate the shortest path to its own neighbors.

The code below utilizes astar_maze_solver() to solve the unweighted case of the 3×3 maze puzzle:

start_cell=(2,0)
target_cell=(1,2)

solution, distance, cell_visits=astar_maze_solver(start_cell,
 target_cell,
 small_maze,
 get_accessible_neighbors,
 constant_heuristic,
 verbose=False)

print('\nShortest Path:', solution)
print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

Shortest Path: [(2, 0), (1, 0), (0, 1), (1, 2)]
Cells on the Shortest Path: 4
Shortest Path Distance: 3
Number of cell visits: 12

The A* Search solver finds the best possible shortest path after 12 cell visits. This is slightly higher than
the BFS solver, which managed to find the solution in only 10 visits. This is due to the simplicity of the
constant heuristic that was used to inform astar_maze_solver(). A superior heuristic can be used to
help the algorithm find the solution faster.

The next step is to evaluate whether A* Search can indeed solve the weighted maze, which BFS failed
to find the shortest path for:

start_cell=(2,0)
target_cell=(1,2)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution, distance, cell_visits=astar_maze_solver(start_cell,
 target_cell,
 small_maze,
 partial(get_accessible_neighbors_weighted,
 horizontal_vertical_weight=horz_vert_w,
 diagonal_weight=diag_w),
 constant_heuristic,
 verbose=False)

print('\nShortest Path:', solution)

48 Artifi cial Intelligence Algorithms1

For Review Purposes Only

The results reveal that astar_maze_solver() manages to solve the weighted case by finding the
shortest possible path [(2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (1, 2)], with a total cost of 5. This demonstrates the
advantage of using an informed search algorithm, which manages to get the optimal solution even
when using the simplest possible heuristic.

big_maze=np.zeros((15,15))

coordinates of the cells occupied by blocks
blocks=[(2,8), (2,9), (2,10), (2,11), (2,12),

(8,8), (8,9), (8,10), (8,11), (8,12),
(3,8), (4,8), (5,8), (6,8), (7,8),
(3,12), (4,12), (6,12), (7,12)]

for block in blocks:
 # set the value of block-occupied cells to be equal to 1
 big_maze[block]=1

This 15×15 maze has a C-shaped section of blocks that the player has to circumnavigate to reach the
target marked by the "X". Next, the BFS and A* Search solvers are used to solve both the weighted and
unweighted versions of this larger maze:

start_cell=(14,0)
target_cell=(5,10)

solution_bfs_unw, distance_bfs_unw, cell_visits_bfs_unw=bfs_maze_solver(start_
cell,

target_cell,
big_maze,
get_accessible_neighbors,
verbose=False)

Shortest Path: [(2, 0), (1, 0), (0, 0), (0, 1), (0, 2), (1, 2)]
Cells on the Shortest Path: 6
Shortest Path Distance: 5
Number of cell visits: 12

Algorithm Comparison
The next step is to compare BFS and A* Search on a larger
and more complex maze. The following Python code can
be used to create a numeric representation of such a maze:

print('Cells on the Shortest Path:', len(solution))
print('Shortest Path Distance:', distance)
print('Number of cell visits:', cell_visits)

unweighted version

target_cell

start_cell

49Artifi cial Intelligence Algorithms 1

For Review Purposes Only

print('\nBFS unweighted.')
print('\nShortest Path:', solution_bfs_unw)
print('Cells on the Shortest Path:', len(solution_bfs_unw))
print('Shortest Path Distance:', distance_bfs_unw)
print('Number of cell visits:', cell_visits_bfs_unw)

solution_astar_unw, distance_astar_unw, cell_visits_astar_unw=astar_maze_solver(
start_cell,
target_cell,
big_maze,
get_accessible_neighbors,
constant_heuristic,
verbose=False)

print('\nA* Search unweighted with a constant heuristic.')
print('\nShortest Path:', solution_astar_unw)
print('Cells on the Shortest Path:', len(solution_astar_unw))
print('Shortest Path Distance:', distance_astar_unw)
print('Number of cell visits:', cell_visits_astar_unw)

BFS unweighted.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8, 6),
(8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13), (6, 13),
(5, 12), (4, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 1237

A* Search unweighted with a constant heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (10, 5), (10, 6),
(9, 7), (9, 8), (10, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13), (6, 13),
(5, 12), (6, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 1272

start_cell=(14,0)
target_cell=(5,10)

horz_vert_w=1
diag_w=3

solution_bfs_w, distance_bfs_w, cell_visits_bfs_w=bfs_maze_solver(start_cell,
target_cell,
big_maze,
partial(get_accessible_neighbors_weighted,

 horizontal_vertical_weight=horz_vert_w,

weighted version

50 Artifi cial Intelligence Algorithms1

For Review Purposes Only

diagonal_weight=diag_w),
verbose=False)

print('\nBFS weighted.')
print('\nShortest Path:', solution_bfs_w)
print('Cells on the Shortest Path:', len(solution_bfs_w))
print('Shortest Path Distance:', distance_bfs_w)
print('Number of cell visits:', cell_visits_bfs_w)

solution_astar_w, distance_astar_w, cell_visits_astar_w=astar_maze_solver(start_
cell,

target_cell,
big_maze,
partial(get_accessible_neighbors_weighted,
horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag_w),
constant_heuristic,
verbose=False)

print('\nA* Search weighted with constant heuristic.')
print('\nShortest Path:', solution_astar_w)
print('Cells on the Shortest Path:', len(solution_astar_w))
print('Shortest Path Distance:', distance_astar_w)
print('Number of cell visits:', cell_visits_astar_w)

BFS weighted.

Shortest Path: [(14, 0), (14, 1), (14, 2), (13, 2), (13, 3), (12, 3), (12, 4),
(11, 4), (11, 5), (10, 5), (10, 6), (9, 6), (9, 7), (9, 8), (9, 9), (9, 10),
(9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5, 12), (4,
11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 30
Number of cell visits: 1235

A* Search weighted with constant heuristic.

Shortest Path: [(14, 0), (13, 0), (12, 0), (11, 0), (10, 0), (9, 0), (9, 1),
(9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9), (9, 10), (9,
11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5, 12), (5, 11),
(5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 25
Number of cell visits: 1245

51Artifi cial Intelligence Algorithms 1

For Review Purposes Only

The results are consistent with the ones reported for the small maze:

• Both BFS and A* Search find the shortest path for the unweighted version.
• BFS finds the solution in fewer visits (1,237 vs. 1,272 for A* Search).
• BFS fails to find the shortest path for the weighted version, as it reports a path with a distance of 30.
• A* Search finds the shortest path for the weighted version, reporting a path with a distance of 25.

maze_bfs_w=big_maze.copy()

for cell in solution_bfs_w:
 maze_bfs_w[cell]=2

plot_maze(maze_bfs_w)

maze_astar_w=big_maze.copy()

for cell in solution_astar_w:
 maze_astar_w[cell]=2

plot_maze(maze_astar_w)

The visualizations verify that the informed nature of A* Search allows it to avoid diagonal moves, as they
have a higher cost than horizontal and vertical ones. On the other hand, the uninformed BFS ignores
the cost of each move and reports a much more expensive solution. A general comparison of
uninformed and informed algorithms is presented in the table.

The following code can be used to visualize the shortest path found by the BFS and A* Search
algorithms on the weighted version:

BFS A* Search

52 Artifi cial Intelligence Algorithms1

For Review Purposes Only

Manhattan distance

Manhattan (A, B) = |x1-x2| + |y1-y2|

A (x1, y1)

B (x2, y2)

Still, the results indicated that BFS could find the optimal solution faster (with fewer cell visits) in
the unweighted case. This can be addressed by providing A* Search with a smarter heuristic. A
popular heuristic in distance-based applications is the Manhattan distance, defined as the sum of
the absolute differences between the coordinates of the two given points. An example is
presented in the image below:

Comparison of uninformed and informed algorithms

Comparison criteria Uninformed Informed

Computational
complexity

They are more computationally
complex. Their computational cost is lower.

Efficiency They are slower than informed
algorithms. They perform searches quicker.

Performance Impractical for solving large-scale
search problems.

Better at handling large-scale
search problems.

Effectiveness The optimal solution is achieved. Generally, adequate solutions are
accepted.

53Artifi cial Intelligence Algorithms 1

For Review Purposes Only

This can be easily implemented as a Python function as follows:

def manhattan_heuristic(candidate_cell:tuple,target_cell:tuple):

 x1,y1=candidate_cell
 x2,y2=target_cell
 return abs(x1 - x2) + abs(y1 - y2)

start_cell=(14,0)
target_cell=(5,10)

solution_astar_unw_mn, distance_astar_unw_mn, cell_visits_astar_unw_mn=astar_
maze_solver(start_cell,

target_cell,
big_maze,
get_accessible_neighbors,
manhattan_heuristic,
verbose=False)

print('\nA* Search unweighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_unw_mn)
print('Cells on the Shortest Path:', len(solution_astar_unw_mn))
print('Shortest Path Distance:', distance_astar_unw_mn)
print('Number of cell visits:', cell_visits_astar_unw_mn)

horz_vert_w=1 # weight for horizontal and vertical moves
diag_w=3 # weight for diagonal moves

solution_astar_w_mn, distance_astar_w_mn, cell_visits_astar_w_mn=astar_maze_
solver(start_cell,

target_cell,
big_maze,
partial(get_accessible_neighbors_weighted,

horizontal_vertical_weight=horz_vert_w,
diagonal_weight=diag_w),

manhattan_heuristic,
verbose=False)

print('\nA* Search weighted with the Manhattan heuristic.')
print('\nShortest Path:', solution_astar_w_mn)
print('Cells on the Shortest Path:', len(solution_astar_w_mn))
print('Shortest Path Distance:', distance_astar_w_mn)
print('Number of cell visits:', cell_visits_astar_w_mn)

The following code can be used to test if this smarter heuristic can be used to help astar_maze_solver()
search the space much faster for both weighted and unweighted scenarios:

54 Artifi cial Intelligence Algorithms1

For Review Purposes Only

A* Search unweighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8, 6),
(8, 7), (9, 8), (9, 9), (9, 10), (9, 11), (9, 12), (8, 13), (7, 13), (6, 13),
(5, 12), (5, 11), (5, 10)]
Cells on the Shortest Path: 19
Shortest Path Distance: 18
Number of cell visits: 865

A* Search weighted with the Manhattan heuristic.

Shortest Path: [(14, 0), (14, 1), (13, 1), (12, 1), (12, 2), (12, 3), (12, 4),
(12, 5), (12, 6), (12, 7), (11, 7), (11, 8), (10, 8), (9, 8), (9, 9), (9, 10),
(9, 11), (9, 12), (9, 13), (8, 13), (7, 13), (6, 13), (5, 13), (5, 12), (5,
11), (5, 10)]
Cells on the Shortest Path: 26
Shortest Path Distance: 25
Number of cell visits: 1033

The results verify that the Manhattan distance heuristic can indeed help A* Search find the shortest
possible paths with a significantly lower number of cell visits for both weighted and unweighted
scenarios. In fact, the use of this more intelligent heuristic led to a significantly lower visit number than
the one required for the BFS algorithm.

The table below summarizes the results for the different algorithm variants on the big maze:

Comparison of algorithms performance

Graph type BFS A* Search with
constant heuristic

A* Search with
Manhattan heuristic

Weighted dist=30, 1235 visits dist=25, 1245 visits dist=25, 1033 visits

Unweighted dist=18, 1237 visits dist=18, 1272 visits dist=18, 865 visits

The table demonstrates the advantages of using increasingly more intelligent algorithms to solve
search-based problems like the one presented in this lesson:

• Switching from an uninformed search algorithm, such as BFS, to an informed one, like A* Search,
delivered better results and enabled the solution of more complex problems.

• The intelligence of informed search algorithms can be further increased by using better heuristics
that allow them to find the optimal solution significantly faster.

55Artifi cial Intelligence Algorithms 1

For Review Purposes Only

2 Identify a difference between uninformed and informed search algorithms and
mention an example of each algorithm.

3 Explain briefly how the A* algorithm works.

4 Modify your code by changing the diagonal weight from 3 to 1.5. What do you
observe? Does the shortest path change for the cases of BFS and A* Search?

5 Modify your code by swapping the starting cell with the target cell coordinates.
What do you observe? Is the path the same as before for the weighted cases of
BFS and A* Search?

1 Identify two applications of search algorithms.

56

EXERCISES

Artifi cial Intelligence Algorithms1

For Review Purposes Only

Comparing BFS and A* Search Algorithms
Smart healthcare is one of the most important sectors
that IoT technologies improve. A variety of devices
and systems are interconnected and exchange large
amounts of data. Medical and biological data are
considered the most private personal data and must
be protected by companies and governments.

1. Modify the code of the weighted BFS and A* Search
algorithms by changing the horizontal and vertical
weights to 3 and the diagonal weights to 5. Also change
the starting point to (7, 2).

2. What is the new shortest distance path and the number
of cell visits of the unweighted versions of the BFS and A*
Search algorithms with the constant heuristic function?
Find these values and present your observations.

3. Follow the same steps for the weighted versions of the
BFS and A* Search algorithms with the constant heuristic
function.

4. Repeat the process for the unweighted and weighted
versions of the A* Search algorithms with the Manhattan
heuristic function.

57

PROJECT

1Artifi cial Intelligence Algorithms

C
op

yr
ig

ht
 ©

 B
in

ar
y

Lo
gi

c
SA

 
sh

er
ry

ya
te

s/
12

3r
f

For Review Purposes Only

KEY TERMS
- A* Search

- Breadth-First Search (BFS)

- Confusion Matrix

- Depth-First Search (DFS)

- Gini Index

- Heuristic Function

- Informed Search

- Knowledge Base

- Maze Solving

- Model Training

- Path Finding

- Queue

- Rule-Based Systems

- Scoring Function

- Search Algorithms

- Stack

- Uninformed Search

- Unweighted Graph

- Weighted Graph

THIS UNIT COVERED HOW TO:
> apply advanced graph traversing algorithms.

> implement both simple and advanced rule-based systems.

> design an AI model.

> measure the e�ectiveness of your AI model.

> use search algorithms to solve simulations of real-life
problems.

A
rt

ifi
ci

al
 In

te
lli

ge
nc

e
A

lg
or

ith
m

s
1 WRAP UP

58 Artifi cial Intelligence Algorithms1

For Review Purposes Only

Foundations of A
I

A
rtificial Intelligence 2

Artificial
Intelligence 2

Foundations of AI
Foundations of AI

Artificial Intelligence 2

Build systems that think for you
Picture a world where machines can think, learn, and solve
problems on their own. What if you could design algorithms
that enable intelligent systems to make decisions, tackle
challenges, and drive innovation—whether it's automating
everyday tasks or advancing the fi eld of robotics?

Foundations of AI: This course teaches you the basics of
artifi cial intelligence and optimization. You’ll learn about
search algorithms like DFS/BFS and how to make decisions
using rule-based systems. Explore optimization problems,
resource management, and scheduling, while learning
techniques to improve decision-making in real-world
situations.

By the end of this course, you'll have the skills to design
and implement powerful AI algorithms, optimize systems
for e� ciency, and apply your knowledge to robotics and
automation. You'll be empowered to build intelligent systems
that can reshape industries and solve problems across
the globe.

For Review Purposes Only

