
ISBN: XXX-XXX-XXX-XXX-X

Artificial
Intelligence 1

A
rtificial Intelligence 1

Foundations of AI

Foundations of A
I

Foundations of AI

Artificial Intelligence 1

Optimize with AI
Picture a world where machines can think, learn, and solve
problems on their own. What if you could design algorithms that
enable intelligent systems to make decisions, tackle challenges,
and drive innovation—whether it's automating everyday tasks or
advancing the field of robotics?

Foundations of AI: This course teaches you the basics of
artificial intelligence and optimization. Explore optimization
problems, resource management, and scheduling, while learning
techniques to improve decision-making in real-world situations.

By the end of this course, you'll have the skills to design
and implement powerful AI algorithms, optimize systems for
efficiency, and apply your knowledge to robotics and automation.
You'll be empowered to build intelligent systems that can
reshape industries and solve problems across the globe. SAMPLER

For Review Purposes Only

Artificial
Intelligence 1

Foundations
of ΑΙ

For Review Purposes Only

Foundations of AI:
Artificial Intelligence 1

Printed and distributed by McGraw Hill in association with Binary Logic SA.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without prior written permission from the publishers. No part of this work may be used
or reproduced in any manner for the purpose of training artificial intelligence technologies or systems.

Disclaimer: McGraw Hill is an independent entity from Microsoft® Corporation and is not affiliated
with Microsoft Corporation in any manner. Any Microsoft trademarks referenced herein are owned
by Microsoft and are used solely for editorial purposes. This work is in no way authorized, prepared,
approved, or endorsed by, or affiliated with, Microsoft.

Please note: This book contains links to websites that are not maintained by the publishers. Although
we make every effort to ensure these links are accurate, up-to-date, and appropriate, the publishers
cannot take responsibility for the content, persistence, or accuracy of any external or third-party
websites referred to in this book, nor do they guarantee that any content on such websites is or will
remain accurate or appropriate.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. The
publishers disclaim any affiliation, sponsorship, or endorsement by the respective trademark owners.

“Python” and the Python logos are registered trademarks of Python Software Foundation. Jupyter
is a registered trademark of Project Jupyter. Google, Chrome, Google Drive, Google Cloud, and
Google CoLaboratory are trademarks or registered trademarks of Google LLC. The above companies
or organizations do not sponsor, authorize, or endorse this book, nor is this book affiliated with them
in any way.

Cover Credit: © ktsdesign/123rf

Copyright © 2026 Binary Logic SA MHID: xxxxxxxxxx ISBN: xxx-xxx-xxx-xxx-x

mheducation.com binarylogic.net

For Review Purposes Only

Contents

1. Basics of Artificial Intelligence . 5
Lesson 1 Introduction to Artificial Intelligence . 7

Exercises . 17
Lesson 2 Introduction to AI Ethics . 18

Exercises . 26

2. Natural Language Processing (NLP) 29
Lesson 1 Supervised Learning . 31

Exercises . 52
Lesson 2 Unsupervised Learning . 54

Exercises . 71
Lesson 3 Generating Text . 73

Exercises . 91

3. Image Recognition . 95
Lesson 1 Supervised Learning for Image Analysis . 97

Exercises . 120
Lesson 2 Unsupervised Learning for Image Analysis 122

Exercises . 136
Lesson 3 Generating Visual Data . 138

Exercises . 150

For Review Purposes Only

Natural Language
Processing (NLP)

2
C

op
yr

ig
ht

 ©
 B

in
ar

y
Lo

gi
c

SA
 

kt
sd

es
ig

n/
12

3r
f

For Review Purposes Only

LEARNING OBJECTIVES
In this unit, you will:
> define supervised learning.

> train a supervised learning model to understand text.

> define unsupervised learning.

> train an unsupervised learning model to understand text.

> create a simple chatbot.

> generate text using the Natural Language Processing (NLP)
techniques.

TOOLS
> Jupyter Notebook

INTRODUCTION
Machine learning helps computers understand and analyze text,
making tools like chatbots and sentiment analysis possible. This
unit focuses on how to train supervised and unsupervised learning
models, explore Natural Language Processing (NLP) techniques,
and create applications that can understand and generate text.

N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 (N
LP

)
2

30 Natural Language Processing (NLP)2

For Review Purposes Only

Using Supervised Learning to Understand Text
Natural Language Processing (NLP) is a field of AI that focuses on enabling computers to understand,
interpret, and generate human language. NLP is concerned with tasks such as text classification,
sentiment analysis, machine translation, and question-answering. This lesson will focus specifically on
how supervised learning, one of the main types of Machine Learning (ML), can be used to automatically
understand and make useful predictions about a text's properties.

Machine learning (ML)
Machine learning (ML) is a subfield of AI that focuses on developing algorithms that enable computers
to learn from data rather than following explicit programming instructions. It involves training computer
models to recognize patterns and make predictions based on input data, allowing the model to improve
its accuracy over time. This allows machines to perform tasks such as classification, regression,
clustering, and recommendation, without being explicitly programmed for each task.

Deep learning
Deep learning is a type of
machine learning that uses
deep neural networks to
automatically learn from large
amounts of data. It allows
computers to recognize
patterns and make decisions in
a more humanlike way, by
building complex models of
the data.

AI is an umbrella term that includes Machine Learning and Deep Learning, as explained in Unit 1 and
illustrated in the figure below. AI is a broad field of computer science that focuses on creating intelligent
machines, while machine learning is a subset of AI that focuses on building algorithms and models that
allow machines to learn from data without being explicitly programmed.

Artificial Intelligence

Machine Learning

Deep Learning

LESSON 1

Supervised Learning

31Natural Language Processing (NLP) 2

For Review Purposes Only

Machine learning can be broadly categorized into three main types:

Supervised learning  is a type of Machine Learning where the algorithm learns from labeled training
data, with the goal of making predictions on new data, not present in the training or test sets, as
illustrated in the figure on the right. Examples:

• Image classification (for example, recognizing objects in photos).
• Fraud detection (for example, identifying suspicious financial

transactions).
• Spam filtering (for example, identifying unwanted email messages).

Unsupervised learning is a type of Machine Learning where the
algorithm works with unlabeled data, trying to find patterns and
relationships in the data. Examples:

• Anomaly detection (for example, detecting unusual patterns in
data).

• Clustering (for example, grouping similar data points together).
• Dimensionality reduction (for example, selecting the dimensions

that reduce data complexity).

Reinforcement learning is a type of Machine Learning where an agent
interacts with its environment and learns by trial and error, receiving
rewards or punishments for its actions. Examples:

• Game playing (for example, playing chess or Go).
• Robotics (for example, teaching a robot to navigate its environment).
• Resource allocation (for example, optimizing resource usage in a network).

The table below summarizes the advantages and disadvantages of each type of machine learning.

Algorithm

Supervisor

Training
Data Set

Desired
Output

Testing
Data Set

Model

Predicted Output

Advantages and disadvantages of Machine Learning types

Advantages Disadvantages

Supervised learning

Well-established and widely used. Requires labeled data, which can be expensive
to obtain.

Easy to understand and implement. Limited to the task it was trained for, and may not
generalize well to new data.

Can handle both linear and non-linear data. Difficult to adapt to other problems if the model is
too complex.

Unsupervised learning

Does not require labeled data, making it more
flexible.

Harder to understand and interpret than
supervised learning.

Can discover hidden patterns in data. Limited to exploratory analysis and may not be
suitable for decision-making tasks.

Can handle high-dimensional and complex data. Difficult to adapt to other problems if the model is
too complex.

32 Natural Language Processing (NLP)2

For Review Purposes Only

Jupyter Notebook
In this unit, you will write Python code using Jupyter Notebook. Jupyter Notebook is an online web
application to create and share computational documents. Each document, called a notebook, includes
your code, comments, raw and processed data, and data visualizations. You will use the offline version
of Jupyter Notebook.

The easiest way to install it locally is through Anaconda, an open-source distribution platform, which is
free for students and hobbyists. Download and install Anaconda from here:
https://www.anaconda.com/products/distribution

Python and Jupyter Notebook will be installed automatically.

Advantages Disadvantages

Reinforcement learning

Flexible and can handle complex and dynamic
environments.

More complex than supervised or unsupervised
learning.

Can learn from experience and improve over
time.

Challenging to design reward functions that
accurately capture the desired behavior.

Suitable for decision-making tasks, such as game
playing and robotics.

May require large amounts of training data and
computational resources.

To open Jupyter Notebook:

> On the Windows Search bar type "Jupyter Notebook". 1

> Open Jupyter Notebook. 2

> The Jupyter Notebook home page opens in the browser. 3

32

1

33Natural Language Processing (NLP) 2

For Review Purposes Only

Code cell. You can type text, a math
expression, or a Python command.

Notebook
toolbar

You can Upload a
notebook from
your computer.

To create a new Jupyter Notebook:

> At the top-right corner of your screen, click New. 1

> Select Python 3 (ipykernel). 2

> Your Notebook opens in a new tab in your browser. 3

The default name of the
notebook is Untitled.

1

3

2

34 Natural Language Processing (NLP)2

For Review Purposes Only

To save your Notebook:

> Click File. 1

> Select Save Notebook As. 2

> Type a name for your Notebook. 3

> Press Save. 4

Now that your notebook is ready, it's time to write and run your first program in Jupyter Notebook.

It's time to save your Notebook.

When you are working, the Notebook is autosaved.

You can run your program by pressing + .

The name of the
notebook has changed.

You can have as many different cells
as you need in the same Notebook.

Each cell contains its own code.

To create a program in Jupyter Notebook:

> Type the commands inside the code cell. 1

> Click the Run button. 2

> The result is displayed under the commands. 3

When you run your
program, a new code cell
is automatically added.

1

2

3

1

3

4

2

35Natural Language Processing (NLP) 2

For Review Purposes Only

Supervised learning
Supervised learning is a type of ML that uses labeled data to train
an algorithm to make predictions. The algorithm is trained on a
labeled dataset and then tested on a hidden dataset. Supervised
learning is commonly used in NLP for tasks such as text
classification, sentiment analysis, and named entity recognition. In
these tasks, the algorithm is trained on a labeled dataset where
each example is labeled with the correct category or sentiment. If
the labels represent continuous numbers, the task is called
regression, which aims to predict values within a range. If the labels
are discrete, the task is referred to as classification, which predicts
specific categories or groups.

Regression
In regression tasks, for example, the focus can be on predicting the sale price of a house based on its
size, location, and number of bedrooms. It can also be used to predict the demand for a product based
on historical sales data and advertising expenditure. In an NLP context, regression can use the available
text to predict the sentiment score of a movie review or the popularity of a social media post.

Classification
Classification, on the other hand, can be used in applications such as diagnosing a medical condition
based on symptoms and test results. When it comes to understanding text, supervised learning can be
used to classify or predict categories or labels based on the words and phrases within a document. For
example, a supervised learning model might be trained to classify an email as spam or not spam based
on the words and phrases used in the email. Another popular application is sentiment classification,
which focuses on predicting whether the overall sentiment of a given document is negative or positive.
This application is used as a working example in this unit to demonstrate all the steps in the end-to-end
process of building and using a supervised learning model.

In this lesson, you will use a dataset of movie reviews. The dataset has already been split into two parts,
one to be used for training the model and one to be used for testing. Download the train and test csv
files for the Large Movie Review Dataset:

https://huggingface.co/datasets/jahjinx/IMDb_movie_reviews/resolve/main/IMDB_test.csv

https://huggingface.co/datasets/jahjinx/IMDb_movie_reviews/resolve/main/IMDB_train.csv

available from http://ai.stanford.edu/~amaas/data/sentiment/

To load the data into a DataFrame, you will use the pandas Python library. The pandas library is a
popular tool for manipulating spreadsheet data. The following code is used to import the library into
your program and then load the two datasets:

Supervised learning
In supervised learning, you
use manually curated and
labeled datasets to train
computer algorithms to
predict new values.

capture is used to suppress the installation output
%%capture

install the pandas library, if it is missing
!pip install pandas
import pandas as pd

Pandas is a popular library used to read
and process spreadsheet-like data.

D
ataset credit: Andrew

 L. M
aas, Raym

ond E. D
aly, Peter T. Pham

, D
an H

uang, Andrew
 Y. N

g, and C
hristopher Potts. (2011). Learning W

ord Vectors
for Sentim

ent Analysis. The 49th Annual M
eeting of the Association for C

om
putational Linguistics (AC

L 2011).

36 Natural Language Processing (NLP)2

For Review Purposes Only

load the train and testing data
movie_train_reviews=pd.read_csv('imdb_train.csv')
movie_test_reviews=pd.read_csv('imdb_test.csv')

movie_train_reviews

The DataFrame dataset has two columns:

• text review.
• label.

A "0" label represents the negative review,
while a "1" label represents the positive one.

extract the text from the 'text' column for both training and testing
X_train_text=movie_train_reviews['text']
X_test_text=movie_test_reviews['text']

extract the labels from the 'label' column for both training and testing
Y_train=movie_train_reviews['label']
Y_test=movie_test_reviews['label']
X_train_text # training data in text format

The next step is to assign the text and label columns to separate variables, from the training and testing
examples in the DataFrame dataset:

positive review

negative review

The data files should be placed
on the same folder that the

Jupyter Notebook is running.

0 Beautifully photographed and ably acted, gener...
1 Well, where to start describing this celluloid...
2 I first caught the movie on its first run on H...
3 I love Umberto Lenzi's cop movies -- ROME ARME...
4 I generally won't review movies I haven't seen...

...
35995 speaking solely as a movie, i didn't really li...
35996 This film plays like a demented episode of VH1...
35997 A couple of teenagers have a little sex on the...
35998 Good things out of the way first:

U...
35999 I saw this in the summer of 1990. I'm still an...
Name: text, Length: 36000, dtype: object

The X, Y notations are
typically used in

supervised learning to
represent the input

data used to make the
prediction (X) and the

target labels (Y).

37Natural Language Processing (NLP) 2

For Review Purposes Only

Data Preparation and Pre-Processing
Even though this raw text format in the previous figure is intuitive to the human reader, it is unusable by
supervised learning algorithms. Instead, algorithms require such documents to be converted into a
numeric vector format. The vectorization process can be implemented in multiple different methods,
and it has a great impact on the performance of the trained model.

sklearn library
The supervised model will be built with sklearn (also known as "scikit-learn"), a popular Python library
for machine learning. It provides a range of tools and algorithms for tasks such as classification,
regression, clustering, and dimensionality reduction. One useful tool within sklearn is the
CountVectorizer, which can be used to preprocess and vectorize text data.

CountVectorizer
The CountVectorizer converts a collection of text documents into a
matrix of token counts, where each row represents a entry and
each column represents a particular token. Tokens can be
individual words, phrases, or even more complex constructs that
capture various patterns in the underlying text data. The matrix
entries (cells) represent the number of times each token exists in
each entry. This is also known as Bag-of-Words (BoW)
representation, as the order of the words is not preserved and only
the counts of the words are retained. Even though the BoW
representation is an oversimplification of human language, it can
achieve very competitive results in practice.

Vectorization
Vectorization is the process
of converting strings of
words or phrases (text) to a
corresponding vector of real
numbers that is used to
encode properties of the text
using a format that ML
algorithms can understand.

from sklearn.feature_extraction.text import CountVectorizer

the min_df parameter is used to ignore terms that exist in less than 10 reviews
vectorizer_v1 = CountVectorizer(min_df=10)

vectorizer_v1.fit(X_train_text) # fit the vectorizer on the training data
use the fitted vectorizer to vectorize the data
X_train_v1 = vectorizer_v1.transform(X_train_text)

X_train_v1

<36000x22161 sparse matrix of type '<class 'numpy.int64'>'
 with 4770650 stored elements in Compressed Sparse Row format>

The following code uses the CountVectorizer tool to vectorize the movie training dataset:

0 apples
1 do
1 I
2 like
2 oranges
1 you

"I like oranges, do you like oranges?"

BoW text vector

Fit is like teaching the model to
recognize the important words
in the training data. This step
helps the vectorizer "learn"
which words to search for.

38 Natural Language Processing (NLP)2

For Review Purposes Only

expand the sparse data into a sparse matrix format, where each column represents a different word
X_train_v1_dense=pd.DataFrame(X_train_v1.toarray(),
 columns=vectorizer_v1.get_feature_names_out())
X_train_v1_dense

from sys import getsizeof
print('\nMegaBytes of RAM memory used by the raw text format:',
 getsizeof(X_train_text)/1000000)
print('\nMegaBytes of RAM memory used by the dense matrix format:',
 getsizeof(X_train_v1_dense)/1000000)
print('\nMegaBytes of RAM memory used by the sparse format:',
 getsizeof(X_train_v1)/1000000)

MegaBytes of RAM memory used by the raw text format: 49.506212

MegaBytes of RAM memory used by the dense matrix format: 6382.368144

MegaBytes of RAM memory used by the sparse format: 4.8e-05

This dense matrix format represents the 36,000 reviews in the training data. It also has a column for
each of the words that presents in at least 10 reviews (enforced via the min_df parameter). As
mentioned above, this creates a total of 22,161 columns, sorted in alphanumeric order. The matrix entry
in position [i,j] represents the number of times that the j_th word presents in the i_th review.

Even though this matrix could directly be used by a supervised learning algorithm, it is highly inefficient
in terms of memory usage. This is due to the fact that the vast majority of the entries in this matrix are
equal to 0. This happens because only a very small percentage of the 22,161 possible words will
actually be found in each review. To address this inefficiency, the CountVectorizer tool stores the
vectorized data in a sparse format, which only remembers the non-zero entries in each column.

The code below uses the getsizeof() function, which returns the size of a Python object in bytes to
demonstrate the memory savings of the sparse format for the movie data:

39Natural Language Processing (NLP) 2

For Review Purposes Only

delete the dense matrix
del X_train_v1_dense

from sklearn.naive_bayes import MultinomialNB

model_v1=MultinomialNB() # a Naive Bayes classifier

model_v1.fit(X_train_v1, Y_train) # fit the classifier on the vectorized training data

from sklearn.pipeline import make_pipeline

create a prediction pipeline: first vectorize using vectorizer_v1, then use model_v1 to predict
prediction_pipeline_v1 = make_pipeline(vectorizer_v1, model_v1)

The following code uses the implementation of the Naive Bayes classifier (MultinomialNB) from the
sklearn library to train a supervised learning model on the vectorized movie review training data:

As expected, the sparse format requires far less memory, more specifically 0.000048 megabytes. The
dense matrix occupies 7 gigabytes. This matrix will not be used again and can thus be deleted to free
up this significant amount of memory:

Build a Prediction Pipeline
Once the training data has been vectorized, the next step is to build a prediction pipeline. A Machine
Learning (ML) pipeline is a sequence of steps designed to process data and generate predictions. It
typically begins by transforming raw data into a format that the model can interpret and then applies a
trained model to make predictions. Organizing these steps into a
pipeline streamlines the process, making it repeatable and ensuring
consistent results when applying the same sequence to new data.

One commonly used classifier for document prediction is the Naive
Bayes classifier. This algorithm predicts the likelihood of a document
belonging to a particular class based on the probabilities of specific
words or phrases occurring within the document. The "naive" aspect
refers to the assumption that the occurrence of each word is
independent of the occurrence of any other word. While this
assumption is strong and may not hold in all cases, it enables the
algorithm to be trained quickly and efficiently, making it highly
effective in many scenarios.

Classifier
In ML, a classifier is a model
that is used to distinguish
data points into different
categories or classes. The
goal of a classifier is to
learn from labeled training
data, and then make
predictions about the class
label for new data.

For example, this code will produce a result array with the first element being "1" for a positive review
and "0" for a negative review:

array([1, 0], dtype=int64)

prediction_pipeline_v1.predict(['One of the best movies of the year. Excellent
cast and very interesting plot.',
 'I was very disappointed with his film. I lost
all interest after 30 minutes'])

40 Natural Language Processing (NLP)2

For Review Purposes Only

The pipeline correctly predicts a positive and negative label for first and second reviews, respectively.
The built-in function predict_proba() can be used to obtain the probabilities that the pipeline assigns
to each of the two possible labels. The first element is the probability that "0" will be assigned and
the second element is the probability that "1" will be assigned:

The next step is to test the accuracy of this new pipeline on the reviews in the movie testing set. The
output is an array of all the result labels for the review given in the test data:

Python provides multiple tools to analyze and visualize the results of classification pipelines. Examples
include the accuracy_score() function from sklearn and the confusion matrix visualization from the
scikit-plot library. There are also other evaluation metrics such as precision, recall, specificity, sensitivity,
and F1 score, depending on the use case, which can be computed from the confusion matrix. The
following output is an approximation of how accurate the prediction was:

from sklearn.metrics import accuracy_score
accuracy_score(Y_test, predictions_v1) # get the achieved accuracy

0.8462

prediction_pipeline_v1.predict_proba(['One of the best movies of the year.
Excellent cast and very interesting
plot.',
 'I was very disappointed with his film. I
lost all interest after 30 minutes'])

array([[0.08567828, 0.91432172],
 [0.81365503, 0.18634497]])

use the pipeline to predict the labels of the testing data
predictions_v1 = prediction_pipeline_v1.predict(X_test_text) # vectorize the text data,
then predict

predictions_v1

array([0, 0, 0, ..., 0, 1, 0], dtype=int64)

The model is 8.6% certain the first review is
negative and 91.4% certain it is positive.

Likewise, it is 81.4% certain the second review is
negative and 18.6% certain it is positive.

91.4% 81.4%

8.6% 18.6%
First

review
Second
review

Positive Negative

41Natural Language Processing (NLP) 2

For Review Purposes Only

from sklearn.metrics import ConfusionMatrixDisplay
import matplotlib.pyplot as plt

Assuming y_true (true labels) and y_pred (predicted labels) are defined
ConfusionMatrixDisplay.from_predictions(
 Y_test, # actual labels
 predictions_v1, # predicted labels
 cmap=plt.cm.Purples #color palette to use
)
plt.show()

The confusion matrix contains the counts of actual vs. predicted classifications. In a binary classification task
(for example, a problem with two labels, such as the movie task), the confusion matrix will have four cells:

The results reveal that even though this first pipeline achieves a competitive accuracy of 84.62%, it still
misclassifies hundreds of reviews. You have 635 incorrect predictions in the upper-right quarter and
903 incorrect predictions in the lower-left corner. This totals 1,538 incorrect predictions. The first step
toward improving performance is to study the behavior of the prediction pipeline in order to reveal how
it processes and understands text.

True Negatives (upper left):
the number of times the
classifier correctly predicted the
negative class.

False Positives (upper right):
the number of times the
classifier incorrectly predicted
the negative class.

False Negatives (lower left):
the number of times the
classifier incorrectly predicted
the positive class.

True Positives (lower right):
the number of times the
classifier correctly predicted the
positive class.

Accuracy
Accuracy is the ratio of correct predictions to the total number of prediction.

Accuracy = (True Positives + True Negatives)
(True Positives + True Negatives + False Positives + False Negatives)

42 Natural Language Processing (NLP)2

For Review Purposes Only

Explaining Black-Box Predictors
The Naive Bayes classifier uses simple mathematical formulas to combine the probabilities of
thousands of words and deliver its predictions. Despite its simplicity, it is still unable to deliver an
intuitive, user-friendly explanation of exactly how it predicts a positive or negative label for a specific
piece of text.

Compare that to decision tree classifiers which are more intuitive, as they represent the learned
decision rules in a tree-like structure, making it easier for people to understand how the classifier
arrived at its predictions. The tree structure also allows for a visual representation of the decisions
being made at each branch, which can be useful in understanding the relationships between input
features and the target variable.

The lack of explainability is an even bigger challenge for more complex algorithms, such as those
based on ensembles (combinations of multiple algorithms) or neural networks. Without explainability,
supervised learning algorithms are reduced to black-box predictors: even though they understand the
text well enough to predict its label, they are unable to communicate how they make their decisions.

A significant amount of research has been devoted to addressing this challenge by designing
explainability methods that can interpret black-box models. One of the most popular methods is LIME
(Local Interpretable Model-Agnostic Explanations).

Local Interpretable Model-Agnostic Explanations (LIME)
LIME is a method for explaining the predictions made by black-box models. It does this by examining at
one data point at a time and making small changes to it to understand how it affects the model's
prediction. LIME then uses this information to train a simple and understandable model, such as a linear
regression, to explain the prediction. For text data, LIME identifies the words or phrases that have the
biggest impact on the prediction. A Python implementation is illustrated below:

install the lime library
!pip install lime
from lime.lime_text import LimeTextExplainer

create a local explainer for explaining individual predictions
explainer_v1 = LimeTextExplainer()

an example of an obviously negative review
easy_example='This movie was horrible. The actors were terrible and the plot was
very boring.'

use the prediction pipeline to get the prediction probabilities for this example
print(prediction_pipeline_v1.predict_proba([easy_example]))

[[0.9987335 0.0012665]]

43Natural Language Processing (NLP) 2

For Review Purposes Only

[('terrible', -0.07304471248484763),
 ('horrible', -0.07178969976550668),
 ('boring', -0.06274054713817784),
 ('plot', -0.021764756522240785),
 ('was', -0.016302963559748168),
 ('movie', -0.014635923349472214),
 ('actors', -0.012024588826189937),
 ('very', 0.009759621047832387),
 ('this', -0.007738594177898454),
 ('were', -0.005531412690294354)]

As expected, the predictor delivers a very confident negative prediction for this easy example.

A more visual representation can be obtained as follows:

explain the prediction for this example
exp = explainer_v1.explain_instance(easy_example.lower(),

prediction_pipeline_v1.predict_proba,
num_features=10)

print the words with the strongest influence on the prediction
exp.as_list()

visualize the impact of the most influential words
fig = exp.as_pyplot_figure()

Focus the explainer
on the 10 most

influential features.

The score of each word represents a
coefficient in the simple linear regression

model that was used to deliver the explanation.

A negative coefficient increases the probability
of the negative class, while a positive
coefficient decreases it. For example, the
words 'horrible', 'terrible', and 'boring' have the
strongest impact on the model's decision to
predict a negative label. The word 'very'
slightly pushed the model in a different
(positive) direction, but it was not nearly
enough to change the decision. To a human
observer, it might seem strange that
sentiment-free words such as 'plot' or 'was'
seem to have relatively high coefficients.
However, it is important to remember that
machine learning does not always follow
human common sense. These high coefficients may indeed reveal flaws in the algorithm's logic and
could be responsible for some of the predictor's mistakes. Alternatively, the coefficients may be
indicative of latent but informative predictive patterns. For example, it may indeed be the case that

44 Natural Language Processing (NLP)2

For Review Purposes Only

exp.show_in_notebook()

human reviewers are more likely to use the word 'plot' or use past tense 'was' when speaking in a
negative context. The LIME Python library can also visualize the explanations in other ways.

For example:

The review used in the previous example was obviously negative and easy to predict. Examine the
following more challenging review which can confuse the algorithm, taken from the testing set of the
movie data:

an example of a positive review that is mis-classified as negative by prediction_pipeline_v1
mistake_example= X_test_text[4600]
mistake_example

"The first Matrix movie was lush with incredible character development, witty
dialog, and action scenes that kept with the flow of the story. These elements
-- coupled by incredible special effects of the day -- presented a magical
ride that kept you in suspense the entire time. Enter Matrix Reloaded (and its
sequel, Revolutions). The problem here isn't the special effects or the fight
sequences as some may argue; The brothers have taken well-developed characters
from the first film and hollowed them out like rotten tree logs.\x85 The
connection that was first established between viewers and on-screen characters
in the first film is lost when you realize these are not the same characters
from the first Matrix movie......."

get the correct labels of this example
print('Correct Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example
print('Prediction Probabilities for neg, pos:',
 prediction_pipeline_v1.predict_proba([mistake_example]))

Correct Label: [0]
Prediction Probabilities for neg, pos: [[9.99999986e-01 1.39884922e-08]]

45Natural Language Processing (NLP) 2

For Review Purposes Only

Improving Text Vectorization
The first version of the prediction pipeline used the
CountVectorizer tool to simply count the number of times that each
word presents in each review. This approach ignores two
important facts about human language:

• The meaning and importance of a word can change based on
the words that surround it.

• The frequency of a word within a document is not always an
accurate representation of its importance. For example, even
though two occurrences of the word 'incredible' may be a strong
positive indicator in a document with 100 words, it is far less
important in a larger document with 1,000 words.

This section will demonstrate how text vectorization can be improved to take these two facts into
account. The following code imports three different Python libraries that will be used to achieve this:

• nltk and gensim: two popular libraries used for various Natural Language Processing (NLP) tasks.
• re: a library used to search and process text using regular expressions.

Regular expression
A regular expression is a
pattern of text used for
matching and manipulating
strings and provides a
concise and flexible way to
specify text patterns and is
widely used in text
processing and data analysis.

Even though this is clearly a positive review, the pipeline reported a very confident negative prediction
with a probability of 99.9%. The explainer can now be used to provide insight into why the predictor
made this erroneous decision:

Even though the predictor correctly captures the positive influence of certain words such as 'incredible',
it ultimately makes a negative decision based on multiple words that seem to have no obvious negative
sentiment (for example, 'Reloaded').

This demonstrates significant flaws in the logic that the predictor utilizes to classify the vocabulary in
the text of the given reviews. The next section demonstrates how improving this logic can significantly
boost the predictor's performance.

explain the prediction for this example
exp = explainer_v1.explain_instance(mistake_example, prediction_pipeline_
v1.predict_proba, num_features=10)

visualize the explanation
fig = exp.as_pyplot_figure()

46 Natural Language Processing (NLP)2

For Review Purposes Only

The sent_tokenize() function from the nltk library splits the given string into a list of sentences, if the
given string is already a sentence, it does not split it anymore but simply return a list with that single
sentence as the only element. Each sentence is then lowercased and fed to the findall() function of the
re library, which locates occurrences a specified pattern, in this case, "\b\w+\b" regular expression.

You will test it on the string provided on the raw_text variable. In this expression:

• \w matches all alphanumeric characters (a-z, A-Z, 0-9) and the underscore character.
• \w+ is used to capture "one or more" \w characters. So, in the string "hello123_world", the pattern \w+

would match the words "hello", "123", and "world".
• \b represents the boundary between a \w character and a non-\w character, as well as at the start or

end of the given string. For example, the pattern \bcat\b would match the word "cat" in the string
"The cat is cute", but it would not match the word "cat" in the string "The category is pets".

Let's check out an example of tokenization using the tokenize_doc() function.

%%capture

!pip install nltk # install nltk
!pip install gensim # install gensim

import nltk # import nltk
nltk.download('punkt') # install nltk's tokenization tool, used to split a text into sentences

import re # import re

from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS # import tools
from the gensim library.

Detecting phrases
The following function can be used to
split a given document into a list of
tokenized phrases, where each tokenized
sentence is represented as a list of words:

Tokenization
The process of breaking up textual data
into pieces such as words, sentences,
symbols, and other elements called tokens.

convert a given doc to a list of tokenized sentences.
def tokenize_doc(doc:str):
 return [re.findall(r'\b\w+\b',
 sent.lower()) for sent in nltk.sent_tokenize(doc)]

The sent_tokenize()
function splits the doc
into a list of sentences.

raw_text='The movie was too long. I fell asleep after the first 2 hours.'

tokenized_sentences=tokenize_doc(raw_text)

tokenized_sentences

[['the', 'movie', 'was', 'too', 'long'],
 ['i', 'fell', 'asleep', 'after', 'the', 'first', '2', 'hours']]

47Natural Language Processing (NLP) 2

For Review Purposes Only

The tokenize_doc() function can now be combined with the Phrases tool from the gensim library to
create a phrase model, a model that can identify multi-word phrases in a given sentence. The following
code utilizes the movie training data (X_train_text) to build such a model:

As illustrated above, the Phrases() function accepts four parameters:

• The list of tokenized sentences from the given document collection.

• A list of common English words that are repeated frequently in phrases (for example, 'of', 'the') that do
not have any positive or negative value but can add sentiment depending on the context, so they are
treated differently.

• A scoring function is used to determine if a sequence of words should be included in the same
phrase. The code above uses the popular Normalized Pointwise Mutual Information (NPMI) measure
for this purpose. NPMI is based on the co-occurrence frequency of the words in a candidate phrase
and takes a value between -1 (complete independence) and +1 (complete co-occurrence).

• A threshold for the scoring function. Phrases with a lower score are ignored. In practice, this
threshold can be tuned to identify the value that yields the best results for a downstream application
(for example, predictive modeling).

The freeze() suffix converts the phrase model into an unchangeable ("frozen") but much faster format.

When applied to the two tokenized sentence examples illustrated above, this phrase model produces
the following results:

sentences=[] # list of all the tokenized sentences across all the docs in this dataset

for doc in X_train_text: # for each doc in this dataset
 sentences+=tokenize_doc(doc) # get the list of tokenized sentences in this doc

build a phrase model on the given data
movie_phrase_model = Phrases(sentences,
 connector_words=ENGLISH_CONNECTOR_WORDS,
 scoring='npmi',
 threshold=0.25).freeze()

The phrase model identifies three phrases:
'too_long', 'fell_asleep', and '2_hours'. All
three carry more information than their
individual words.

movie_phrase_model[tokenized_sentences[0]]

['the', 'movie', 'was', 'too_long']

movie_phrase_model[tokenized_sentences[1]]

['i', 'fell_asleep', 'after',
'the', 'first', '2_hours']

asleep
negative

fell
context

fell_asleep
negative+

2
context

hours
context

2_hours
specific context

too_long
negative

too
neutral

long
neutral

tokenized

tokenized

tokenized

48 Natural Language Processing (NLP)2

For Review Purposes Only

For example, 'too_long' clearly carries a negative sentiment, even though the words 'too' or 'long' by
themselves do not. Similarly, even though encountering the word 'asleep' in a movie review is likely
negative evidence, the phrase 'fell_asleep' delivers a much clearer message. Finally, '2_hours' captures
a much more specific context than the words '2' and 'hours'.

The following function uses this phrase-detection capability to annotate phrases in a given document:

def annotate_phrases(doc:str, phrase_model):

 sentences=tokenize_doc(doc)# split the document into tokenized sentences

 tokens=[] # list of all the words and phrases found in the doc
 for sentence in sentences: # for each sentence
 # use the phrase model to get tokens and append them to the list
 tokens+=phrase_model[sentence]
 return ' '.join(tokens) # join all the tokens together to create a new annotated document

annotate all the test and train reviews
X_train_text_annotated=[annotate_phrases(doc,movie_phrase_model) for doc in X_
train_text]
X_test_text_annotated=[annotate_phrases(text,movie_phrase_model)for text in X_
test_text]
an example of an annotated document from the movie review training data
X_train_text_annotated[0]

The following code uses the annotate_phrases() function to annotate both the training and testing
reviews from the movie dataset:

'beautifully_photographed and ably acted generally but the writing is very
slipshod there_are scenes of such unbelievability that there_is no joy in the
watching the fact_that the young_lover has a twin_brother for instance is so
contrived that i groaned out_loud and the emotion light_bulb connection seems
gimmicky too br_br i_don t_know though if_you have a few glasses of wine and
feel_like relaxing with something pretty to look at with a few flaccid comedic
scenes this_is a pretty_good movie no major effort on the part of the viewer
required but italian film especially italian comedy is usually much much_better
than this'

Using TF-IDF for Text Vectorization
The frequency of a word within a document is not always an
accurate representation of its importance. A better way to
represent frequency is the popular Term Frequency Inverse
Document Frequency (TF-IDF) measure. TF-IDF uses a simple
mathematical formula to determine the importance of tokens (for
example, words or phrases) in a document based on the two
factors:

• TF: the frequency of the token in the document, as measured
by the number of times the token presents in the document
divided by the total number of tokens in the documents.

Term Frequency Inverse
Document Frequency
 (TF-IDF)
TF-IDF is a statistical method
which is used to determine the
importance of tokens in a
document.

49Natural Language Processing (NLP) 2

For Review Purposes Only

from sklearn.feature_extraction.text import TfidfVectorizer

Train a TF-IDF model with the movie review training dataset
vectorizer_tf = TfidfVectorizer(min_df=10)
vectorizer_tf.fit(X_train_text_annotated)
X_train_tf = vectorizer_tf.transform(X_train_text_annotated)

This new vectorizer can now be input to the same Naive Bayes classifier to build a new predictive
pipeline and apply it to the movie testing data:

train a new Naive Bayes classifier on the newly vectorized data
model_tf =MultinomialNB()
model_tf.fit(X_train_tf, Y_train)

create a new prediction pipeline
prediction_pipeline_tf = make_pipeline(vectorizer_tf, model_tf)

get predictions using the new pipeline
predictions_tf = prediction_pipeline_tf.predict(X_test_text_annotated)

print the achieved accuracy
accuracy_score(Y_test, predictions_tf)

0.8812

This new pipeline achieves an accuracy of 88.12%, a significant improvement over the 84.62% reported
by the previous one. This improved pipeline can now be used to revisit the test example that was
misclassified by the first pipeline:

get the review example that confused the previous algorithm
mistake_example_annotated=X_test_text_annotated[4600]

print('\nReview:',mistake_example_annotated)

• IDF: the token's inverse document frequency, computed by
dividing the total number of documents in the dataset by the
number of documents that contain the token.

The first factor avoids the overestimation of the importance of
terms that are present in longer documents. The second factor
penalizes terms that are present in too many documents, which
helps to adjust for the fact that some words are more common
than others.

TfidfVectorizer tool
The sklearn library provides a tool that supports this type of
TF-IDF vectorization. The TfidfVectorizer tool can be used to
vectorize a phrase.

Corpus

Document word term

times of term presents in document
number of words in the document = TF

number of documents in corpus
number of documents containing term = IDF

TF * IDF = Value

50 Natural Language Processing (NLP)2

For Review Purposes Only

Review: the first matrix movie was lush with incredible character_development
witty_dialog and action_scenes that kept with the flow of the story these_
elements coupled by incredible special_effects of the day presented a magical
ride that kept you in suspense the entire time enter matrix_reloaded and its
sequel revolutions the problem here isn_t the special_effects or the fight_
sequences as some may_argue the brothers have_taken well_developed characters
from the first film and hollowed them out like rotten tree logs the connection
that was first established between viewers and on screen characters in the
first film is lost when_you realize these are not the same characters from
the first matrix movie br_br to wit morpheus was developed as a charismatic
philosophical character with insight far exceeding anyone_else in the movie but
here in reloaded we_re presented by a different morpheus who stands hard and
hollow reduced to corny one_liners that contradict the character we saw develop
in the first film this character
Correct Label: [0]

Prediction Probabilities for neg, pos: [[0.65729403 0.34270597]]

get the correct labels of this example
print('\nCorrect Label:', class_names[Y_test[4600]])

get the prediction probabilities for this example
print('\nPrediction Probabilities for neg, pos:',prediction_pipeline_tf.predict_
proba([mistake_example_annotated]))

The new pipeline confidently predicts the correct positive label for this review. The following code uses
the LIME explainer to explain the logic behind this prediction:

The results verify that the new pipeline follows a significantly
more intelligent logic. It correctly identifies the positive sentiment
of phrases like 'incredible' and 'extremely_well'. It is also not
misguided by the words that erroneously drove the first pipeline
toward a negative prediction.

The performance of the predictive pipeline can be further
improved in multiple ways, such as replacing the Naive Bayes
classifier with more sophisticated methods and tuning the
parameters of these methods to maximize their potential. Another
option would be to experiment with alternative vectorization techniques that are not based on token
frequency, such as the word and document embeddings that will be explored in the following lesson.

create an explainer
explainer_tf = LimeTextExplainer()

explain the prediction of the second pipeline for this example
exp = explainer_tf.explain_instance(mistake_example_annotated, prediction_
pipeline_tf.predict_proba, num_features=10)

visualize the results
fig = exp.as_pyplot_figure()

51Natural Language Processing (NLP) 2

For Review Purposes Only

3 You are given a numPy array X_train_text that includes one document in each row.
You are also given a second array Y_train that includes the labels for the documents
in X_train_text. Complete the following code so that it uses TF-IDF to vectorize the
data, trains a MultinomialNB classification model on the vectorized version, and
then combines the vectorizer and classification model into a single prediction
pipeline. Write the answers in your notebook.

from  1  .naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

from sklearn.feature_extraction.text import  2 

vectorizer =  3 (min_df=10)

vectorizer.fit( 4 ) # fits the vectorizer on the training data

X_train = vectorizer. 5 (X_train_text) # uses the fitted vectorizer to vectorize the data

model_MNB=MultinomialNB() # a Naive Bayes classifier

model_MNB.fit(X_train,  6 ) # fits the classifier on the vectorized training data

prediction_pipeline = make_pipeline( 7 ,  8 )

1 Explain the reason the dense matrix format requires more space in the memory
than the sparse format.

2 Analyze how the two mathematical factors in TD-IDF are utilized to inspect the
importance of a word in a document.

52

EXERCISES

Natural Language Processing (NLP)2

For Review Purposes Only

4 Complete the following code so that it builds LimeTextExplainer for the prediction
pipeline that you built in the previous exercise and uses the explainer to explain the
prediction for a specific text example. Write the answers in your notebook.

from  1  import LimeTextExplainer

text_example="I really enjoyed this movie, the actors were excellent"

class_names=['neg','pos'] # creates a local explainer for explaining individual predictions

explainer =  2 (class_names=class_names) # explains the prediction for this example

exp = explainer. 3 (text_example.lower(),prediction_pipeline. 4 ,

  5 =10) # focuses the explainer on the 10 most influential features

print(exp. 6 ) # prints the words with the highest influence on the prediction

53Natural Language Processing (NLP) 2

For Review Purposes Only

Text classification
Text classification is a two-step process that includes:

Step 1: Using a set of training documents with known
labels (classes) to train a classification model.

Step 2: Using the trained model to predict the label for
each document in a testing set. The labels in
the testing set are either unknown or hidden
and used later for verification.

The documents in both the training and testing sets have to
be vectorized before they can be used. The CountVectorizer
or TfidfVectorizer tools from the sklearn library can be used
for vectorization.

The Python sklearn library offers a long list of classification
models. Some of them are:

> GradientBoostingClassifier()

> DecisionTreeClassifier()

> RandomForestClassifier()

Your task is to use the Movie Review training dataset that was
used in the first lesson to train a model that achieves the
highest possible accuracy on the Movie Review testing
dataset (imdb_data/imdb_test.csv). You can achieve this by:

1. Replace the MultinomialNB classifier with other
classification models from sklearn, such as the ones
listed above.

2. Re-run your notebook after each replacement to
compute the accuracy of each new model that you try.

3. Create a report that compares the accuracy of all the
models that you tried and identifies the one that
achieved the best accuracy.

93

PROJECT

2Natural Language Processing (NLP)

C
op

yr
ig

ht
 ©

 B
in

ar
y

Lo
gi

c
SA

 
ol

eg
du

dk
o/

12
3r

f

For Review Purposes Only

KEY TERMS
- Black-Box Predictors

- Chatbot

- Classification

- Cluster

- Dendrogram

- Dimensionality Reduction

- Document Clustering

- Machine Learning

- Natural Language Generation
(NLG)

- Natural Language Processing
(NLP)

- Part of Speech (POS) Tags

- Regression

- Sentiment Analysis

- Supervised Learning

- Syntax Analysis

- Tokenization

- Transfer Learning

- Unsupervised Learning

- Vectorization

THIS UNIT COVERED HOW TO:
 > classify text with unsupervised learning models.

 > analyze text with supervised learning models.

 > use machine learning models for NLG.

 > program a simple chatbot.

N

at
ur

al
 L

an
gu

ag
e

Pr
oc

es
si

ng
 (N

LP
)

2 WRAP UP

94 Natural Language Processing (NLP)2

For Review Purposes Only

ISBN: XXX-XXX-XXX-XXX-X

Artificial
Intelligence 1

A
rtificial Intelligence 1

Foundations of AI

Foundations of A
I

Foundations of AI

Artificial Intelligence 1

Optimize with AI
Picture a world where machines can think, learn, and solve
problems on their own. What if you could design algorithms that
enable intelligent systems to make decisions, tackle challenges,
and drive innovation—whether it's automating everyday tasks or
advancing the field of robotics?

Foundations of AI: This course teaches you the basics of
artificial intelligence and optimization. Explore optimization
problems, resource management, and scheduling, while learning
techniques to improve decision-making in real-world situations.

By the end of this course, you'll have the skills to design
and implement powerful AI algorithms, optimize systems for
efficiency, and apply your knowledge to robotics and automation.
You'll be empowered to build intelligent systems that can
reshape industries and solve problems across the globe.

For Review Purposes Only

