
During the early planning phase of Everyday Mathematics 4, a team of writers worked together 
to read and summarize the current body of research about spatial measurement. The information 
that follows is the summary of that research. For more information about the planning phases of 
Everyday Mathematics 4, see the paper “Everyday Mathematics and the Writing Process”. 

Summary of the Spatial Measurement Research in Everyday Mathematics 4 

In order to strengthen the measurement content and pedagogy throughout Everyday 
Mathematics, we explored some of the research related to how elementary school children learn 
about spatial measurement—finding the lengths, areas, and volumes/capacities of geometric or 
real life objects. This research summary covers work produced by Battista; Clements and 
Sarama; Ngyuen; Outhred and Michelmore; Solomon, Vasilyeva, Levine, and Huttenlocher; and 
Smith, among others. Battista’s research involved testing elementary aged children to determine 
the order in which skills necessary to perform various measurement tasks develop. Clements and 
Sarama also conducted research to establish developmental sequences, or learning trajectories, 
for the development of measurement skills and understandings. Barrett and Battista made a 
comparison of the trajectories for linear measurement developed by Clements and Sarama and by 
Battista.  Nguyen posits theoretical trajectories for development of length and area 
understanding. Outhred and Mitchelmore focus on skills and understandings children develop 
before receiving formal instruction in area. Solomon, Vasilyeva, Levine, and Huttenlocher 
assessed children’s procedural and conceptual understanding of measurement by testing 
kindergarteners’ and second graders’ abilities to measure length using either a ruler or a row of 
discrete items. Smith’s research has identified conceptual elements related to measurement that 
are important, but often missing, from current curricula and teaching.  

The limitations of these studies are that each is fairly narrow in scope and disconnected from the 
others. The studies regarding length either have a conceptual focus and ignore ruler/tool usage or 
they focus entirely on measuring with rulers, with some attention to how children’s proficiency 
or difficulty with this skill illustrates conceptual understanding (or lack thereof). The studies that 
attend to both conceptual and procedural aspects of measurement do not posit a clear order or 
approach for layering conceptual understanding with measurement practice. The studies 
exploring area exclusively tested children on finding the areas of rectangles, and thus do not shed 
light on finding the areas of other figures and how this type of work might fit in with 
understanding and measuring area more generally. Additional informal discussions with Jack 
Smith and his team have helped us to bridge some of these gaps in the research, as well as 
address some specific questions that our working group raised.  

Below, we divide spatial measurement into length, area, and volume/capacity, highlighting 
parallels and connections among the learning trajectories for each dimension. The majority of 
measurement research we reviewed has been dedicated to length, but some researchers note that 
measuring area and volume/capacity involve skills and concepts that parallel length-
measurement skills—especially the fundamental notion of iterating units for any dimension 
(Battista, 2004; Battista, 2006; Outhred, et al., 2000; Smith, et al., 2008). That said, Jack Smith 
argues that in order to understand what area and volume/capacity are, to best understand area and 
volume calculations, and to be able to solve problems involving area and volume/capacity, 
children must explicitly explore and learn the concepts related to these topics, just as they do for 
length. For example, Smith advises that just because children have learned about iterating units 



for length does not mean they will automatically realize that units are also iterated for area or 
volume/capacity. So, the concepts that run in parallel for length, area, and volume/capacity must 
be made explicit and repeated for each dimension; they must also be connected with one another.  

Length 

Research indicates that even very young children typically have the ability to recognize objects 
as larger or smaller without attending to a particular dimension. Before age five, they are able to 
recognize length as a dimension separate from other measurable attributes of objects such as 
area, volume/capacity, or weight (Barrett, et al., 2011; Nguyen, 2010). At this point, they begin 
to make holistic comparisons of lengths based on how things look, without making direct 
comparisons (Barrett, et al., 2011; Battista, 2006; Clements, et al., 2006; Nguyen, 2010; Smith, 
et al., 2008). Next, they start to refine vague visual comparisons of lengths into direct 
comparisons (Barrett, et al., 2011; Battista, 2006; Clements, et al., 2006; Nguyen, 2010; Smith, 
et al., 2008). Not only will they look at two paths and say that one looks a little longer than the 
other, but they may also try to line up the ends of the paths (Barrett, et al., 2011; Battista, 2006; 
Clements, et al., 2006; Nguyen, 2010; Smith, et al., 2008).  These qualitative comparisons of 
length seem to be an important early step toward understanding quantitative measurement. Being 
able to say that one object is shorter than another allows children to then use the shorter object as 
a unit for measuring the longer one. (Clements, et al., 2006; Smith, et al., 2008) 

Just as holistic, visual comparisons of length serve as a precursor to direct comparisons of length, 
counting to find length—regardless of unit iteration—serves as a precursor for quantitative 
measurement that involves correct unit iteration (Clements, et al., 2006). For example, children 
may count as they move their fingers along a path or count unevenly spaced, differently sized 
beads on a string in an attempt to measure the lengths of the path and string (Clements, et al., 
2006). When they do this, they begin to see that greater measures mean longer lengths (an idea 
that is embedded in the language of number use, ten is bigger than three, eight is higher than 
five) (Clements, et al., 2006; Smith, et al., 2008). Battista considers understanding length as a 
measurable attribute of objects, qualitative comparisons of lengths, and counting in the context 
of length to be pre-measurement skills.  

Research suggests that at around age five, children start to intuitively understand length 
conservation—that length is conserved through rigid transformations, as well as through 
breaking and reassembling or partitioning; and that length is independent of the measurement 
unit used (Clements, et al., 2006; Nguyen, 2010; Smith, et al., 2008). Children can use these 
ideas when comparing two lengths because they can then decompose and recompose paths (to 
match each other or straighten both, for instance) or point to specific parts of paths when they 
compare total lengths of paths (Clements, et al., 2006) Children at this stage understand that 
given any two paths, either one is longer than the other or they are equal in length (Smith, et al., 
2008). They begin to explore the idea that length has transitivity as they compare two lengths by 
representing them with a third (Barrett, et al., 2011; Battista, 2006; Clements, et al., 2006; Smith, 
et al., 2008). 

Representing the length of an object with another object is where unit iteration comes into play 
(Barrett, et al., 2011; Battista, 2006; Clements, et al., 2006; Smith, et al., 2008). At first, children 
begin by iterating what they consider to be a unit length along an object or path, but they make 
errors related to not understanding that units must be the same length or not knowing how to 



enumerate units properly (without gaps, overlaps, etc.) (Barrett, et al., 2011; Battista, 2006; 
Clements, et al., 2006; Smith, et al., 2008). Next children work toward correct unit iteration, 
when they can position unit lengths end-to-end along an object and count them to arrive at the 
measure (Barrett, et al., 2011; Battista, 2006; Clements, et al., 2006; Smith, et al., 2008). Several 
researchers caution that this is an area where children’s conceptual understanding is often 
lacking, noting that children tend to rely on procedural steps that they may not fully understand 
(Levine, et al., 2009; Smith, 2008; Smith, et al., 2008; Solomon, et al., n.d.). Smith and others 
advise that, at this stage, measurement activities should develop conceptual understandings and 
correct procedures through examples and discussions of incorrect and non-identical unit 
iteration, in addition to having children practice correct unit iteration techniques. These same 
researchers suggest the importance of helping children see the connection between measuring by 
concretely iterating units and measuring with rulers or other tools that include pre-iterated unit 
markings. They note that layering units on or alongside standard measuring tools (or constructing 
such tools from standard unit lengths) may promote children’s understanding that the marks on 
standard measuring tools represent iterations of standard length units (Levine, et al., 2009; 
Smith, 2008; Smith, et al., 2008; Solomon, et al., n.d.). Studies of current curricula, including 
EM, indicate that there is not adequate attention to this approach (Smith, 2008; Smith, et al., 
2008)..  

Relatedly, Smith’s data on how measurement is commonly taught indicates that when children 
first begin to measure with a ruler, they are typically instructed to align one end of the length to 
be measured with the zero mark on the ruler, look for the number that is closest to the other end 
(= x), and state that the measured length is x units. Data from Solomon, Vasilyeva, Levine, and 
Huttenlocher, as well as from Smith, caution against this practice, though. Their findings suggest 
that, even when objects are misaligned with the zero end of the ruler, children often incorrectly 
use the technique of reading the number at the right edge of the object being measured, reflecting 
an over-reliance on a measurement procedure they don’t fully understand (Smith, 2008; Smith, et 
al., 2008; Solomon, et al., n.d.). 

These researchers suggest that it may be preferable to teach children how to measure an object 
with a ruler without aligning the zero mark with the end of the object. They further suggest that 
this should be done in conjunction with the types of activities described above in which children 
connect concrete unit iteration with the unit markings on standard measuring tools (Levine, et al., 
2009; Smith, 2008; Smith, et al., 2008; Solomon, et al., n.d.).   

Smith suggests that it does not seem to matter whether metric or U.S. customary units and tools 
are introduced first, but that it is best to introduce them separately. Smith believes that children 
should have an opportunity to solidify their knowledge and experience in one system of 
measurement before encountering a different system. He recommends beginning with U.S. 
customary units, largely because children may already have some experience with it. As children 
use U.S. customary or metric measures, they will likely become familiar with and properly use 
abbreviations for the measures (Smith, et al., 2008). 

At about age eight, children can engage in “conceptual ruler measuring,” or estimating lengths of 
unpartitioned objects by imagining measuring them, rather than by iterating units or using 
measuring tools (Barrett, et al. 2011). At this stage, children with an understanding of unit 
iteration and counting can imagine a ruler or their wingspans along the wall of a classroom 

(Barrett, et al. 2011; Clements, et al., 2006; Smith, et al., 2008). Children in primary grades are 



able to define the units they use (standard and non-standard) with actual size drawings, scale 
drawings, or verbal statements (Smith, et al., 2009). 

Understanding that a path is both a set of added lengths and a single length, and that those two 
lengths have the same measure, is called “integrated conceptual path measuring” (Barrett, et al. 
2011). It is developed and practiced by adding iterations of units3. Battista shows this in 
activities where children find perimeters of rectangles by counting and adding lengths of sides 

(Battista, 2004). This understanding that length is additive allows children to begin adding 
lengths without iterating (Barrett, et al., 2011; Battista, 2004). In Battista’s research, this entailed 
children finding the perimeter of a rectangle by adding the lengths of sides. Children who have 
achieved this understanding can see lengths as continuous and also as numbers that obey 
operations. 

Later in the primary grades, children can compare lengths by using property-based 
transformations to situate objects in ways that facilitate comparison. Children use slides, flips, 
and turns to transform shapes, comparing perimeters by rearranging for congruency (Battista, 
2004). 

According to Barrett and Battista, once children understand all of the previously discussed skills, 
they can coordinate and integrate abstract measuring with derived units—units found by 
calculation rather than direct measurement (Barrett, et al. 2011). This involves converting among 
units, using numeric operations on lengths, and justifying significant digits. Smith specifically 
calls out the use of ratios to convert measures within and across measurement systems among 
these skills (Smith, et al., 2008). 

Area 

Research suggests that children’s earliest understandings about area involve distinguishing 
between length and area and recognizing area as an attribute of objects or shapes. According to 
both Nguyen and Smith, this means that children can point to the surface of an object and say 
that it has area and also indicate that the length of the object is a line from one end of the surface 
to another, without confounding the two measures (Levine, et al., 2009; Smith, et al. 2008). 

Once children have an idea of what area is, they begin to understand that area, like length, is 
conserved over transformations. They can compare areas directly by placing one shape on top of 
another to check for complete covering. They may, however, have a more difficult time 
comparing areas that do not completely overlap until they understand conservation of area over 
breaking. When they understand conservation of area over breaking, children realize that area 
does not change when shapes are cut apart and reassembled. Understanding that area is 
conserved when an object is cut and rearranged into the same configuration is understood first, 
followed later by understanding that area is conserved when cutting and rearranging an object 
into a different configuration. Then children can compare areas by decomposing and 
recomposing shapes into configurations that can be compared directly (Nguyen, 2010). 

Smith clarifies that children are able to iterate area units, tile, and partition areas once they 
understand conservation of area by decomposition (just as being able to compare lengths allows 
children to begin measuring length quantitatively). He advises that children begin measuring area 
by iterating, then by tiling and partitioning. When asked to cover or partition a rectangular area 
into squares, children learn to cover the area completely with uniform size and shape units 



without overlaps or gaps (Outhred, et al., 2000). Battista calls the ability to correctly align and 
count iterations of units “units-locating”. Without units-locating skills that come from practice 
with iterating units, children may have trouble partitioning a rectangle into logically placed units 

(Battista, 2004). Establishing units-locating skills aligns with Outhred and Mitchelmore’s spatial 
structuring, wherein children align units in an array with the same number of units in each row.  

Breaking an area into units allows children to more specifically compare areas using 
commensurate units (Nguyen, 2010). This skill draws on the idea of area transitivity, which is 
parallel to their experiences with length transitivity (when they compare two lengths by 
representing them with a third) (Nguyen, 2010). Also, just as children learn that changing the 
unit size does not change the length of an object, children also understand that changing unit size 
does not change an object’s area (Nguyen, 2010). Children begin to understand that area measure 
is inversely related to unit size (Nguyen, 2010; Outhred, et al., 2000). 

Once iterating and tiling skills help to establish spatial structures, organizing area by composites 
becomes easier. According to Battista, organizing by composites “combines an array’s basic 
spatial units (squares or cubes) into more complicated composite units that can be repeated or 
iterated to generate the whole array” (Battista, 2004). This helps to solidify the units-locating 
process so that children can “see a corner square as part of a row and part of a column” (Battista, 
2004). Organization by composites is most sophisticated when children structure arrays in terms 
of maximal composites, e.g. entire rows or columns (Battista, 2004). 

Understanding that the length of a line specifies the number of unit lengths that will fit alongside 
it allows children to then use the lengths of sides of a rectangle to determine both the number of 
units in each row and the number of rows. Children can then develop and understand an area 
formula for rectangles that involves calculating the number of units in a rectangular array from 
the number of units in each row and each column – determined by the lengths of the sides 

(Outhred, 2000). 

Area obeys numeric operations just as length does. Conservation of area over breaking begins to 
develop the idea of area being additive. Understanding the inverse relationship between area 
measure and unit size will help children understand the quantitative relationship between unit 
size and area (Nguyen, 2010). 

Volume/Capacity 

Battista’s research focuses on volume in conjunction with area; more specifically, it focuses on 
units-locating and organizing by composites. Just as Battista outlines for area, once children start 
to be able to iterate volume units correctly and logically, they then start to organize the space into 
composites—in this case, the composites include layers. Seeing a volume as a stack of layers 
helps children to focus their units-locating process and identify corners as being parts of rows, 
columns, and layers. The trajectory has children eventually using maximal composites—that is, 
stacking layers. Then children can most efficiently and effectively use units-locating and 
organizing by composites to determine volumes of rectangular prisms (Battista, 2004). 

Just as the area research we read does not go much beyond finding areas of rectangles, the 
volume research focused entirely on finding volumes of rectangular prisms.  
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