Skip to main content

Humanities, Social Science and Language


Digital Products


Connect®
Course managementreporting, and student learning tools backed by great support.

McGraw Hill GO
Greenlight learning with the new eBook+

ALEKS®
Personalize learning and assessment

ALEKS® Placement, Preparation, and Learning
Achieve accurate math placement

SIMnet
Ignite mastery of MS Office and IT skills

McGraw Hill eBook & ReadAnywhere App
Get learning that fits anytime, anywhere

Sharpen: Study App
A reliable study app for students

Virtual Labs
Flexible, realistic science simulations

Services


Inclusive Access
Reduce costs and increase success

LMS Integration
Log in and sync up

Math Placement
Achieve accurate math placement

Content Collections powered by Create®
Curate and deliver your ideal content

Custom Courseware Solutions
Teach your course your way

Professional Services
Collaborate to optimize outcomes

Remote Proctoring
Validate online exams even offsite

Institutional Solutions
Increase engagement, lower costs, and improve access for your students

Support


General Help & Support Info
Customer Service & Tech Support contact information

Online Technical Support Center
FAQs, articles, chat, email or phone support

Support At Every Step
Instructor tools, training and resources for ALEKS, Connect & SIMnet

Instructor Sample Requests
Get step by step instructions for requesting an evaluation, exam, or desk copy

Platform System Check
System status in real time

Statics and Mechanics of Materials
Statics and Mechanics of Materials

Statics and Mechanics of Materials

ISBN10: 1260226751 | ISBN13: 9781260226751
By Ferdinand Beer, E. Johnston, John DeWolf and David Mazurek

Format Options:

* The estimated amount of time this product will be on the market is based on a number of factors, including faculty input to instructional design and the prior revision cycle and updates to academic research-which typically results in a revision cycle ranging from every two to four years for this product. Pricing subject to change at any time.

Instructor Information

Quick Actions (Only for Validated Instructor Accounts):

The approach of the Beer and Johnston series has been appreciated by hundreds of thousands of students over decades of engineering education. Maintaining the proven methodology and pedagogy of the Beer and Johnson series, Statics and Mechanics of Materials combines the theory and application behind these two subjects into one cohesive text focusing on teaching students to analyze problems in a simple and logical manner and, then, to use fundamental and well-understood principles in the solution.

The addition of Case Studies based on real-world engineering problems provides students with an immediate application of the theory. A wealth of problems, Beer and Johnston's hallmark sample problems, and valuable review and summary sections at the end of each chapter, highlight the key pedagogy of the text.

1) Introduction

2) Statics of Particles

3) Rigid Bodies: Equivalent Systems of Forces

4) Equilibrium of Rigid Bodies

5) Distributed Forces: Centroids and Centers of Gravity

6) Analysis of Structures

7) Distributed Forces: Moments of Inertia

8) Concept of Stress

9) Stress and Strain-Axial Loading

10) Torsion

11) Pure Bending

12) Analysis and Design of Beams for Bending

13) Shearing Stresses in Beams and Thin-Walled Members

14) Transformations of Stress

15) Deflection of Beams

16) Columns

Appendices

Index

Answers to Problems

McGraw Hill Connect Product Logo

Main Features

  • LMS Integration
  • Print/Loose-Leaf Book Add-On Availability
  • Presentation Slides & Instructor Resources
  • Question & Test Banks
  • Adaptive Assignments
  • Student Progress Reporting & Analytics
  • Essay Prompts
  • Polling
  • Prebuilt Courses
  • Interactive Exercises
  • eBook Access (ReadAnywhere App)
  • Remote Proctoring (Proctorio)
  • Subject-Specific Tools

About the Author

Ferdinand Beer

Born in France and educated in France and Switzerland, Ferdinand Beer held an M.S. degree from the Sorbonne and an Sc.D. degree in theoretical mechanics from the University of Geneva. He came to the United States after serving in the French army during the early part of World War II and taught for four years at Williams College in the Williams-MIT joint arts and engineering program. Following his service at Williams College, Beer joined the faculty of Lehigh University, where he taught for thirty-seven years. He held several positions, including the University Distinguished Professors Chair and Chairman of the Mechanical Engineering and Mechanics Department. In 1995, Beer was awarded an honorary Doctor of Engineering degree by Lehigh University.

E. Johnston

Born in Philadelphia, Russ holds a B.S. degree in civil engineering from the University of Delaware and an Sc.D. degree in the field of structural engineering from The Massachusetts Institute of Technology (MIT). He taught at Lehigh University and Worchester Polytechnic Institute (WPI) before joining the faculty of the University of Connecticut where he held the position of Chairman of the Civil Engineering Department and taught for twenty-six years. In 1991 Russ received the Outstanding Civil Engineer Award from the Connecticut Section of the American Society of Civil Engineers.

John DeWolf

John T. DeWolf, Professor of Civil Engineering at the University of Connecticut, joined the Beer and Johnston team as an author on the second edition of Mechanics of Materials.  John holds a B.S. degree in civil engineering from the University of Hawaii and M.E. and Ph.D. degrees in structural engineering from Cornell University.  His research interests are in the area of elastic stability, bridge monitoring, and structural analysis and design.  He is a registered Professional Engineer and a member of the Connecticut Board of Professional Engineers.  He was selected as the University of Connecticut Teaching Fellow in 2006.

David Mazurek

David Mazurek holds a B.S. in ocean engineering and an M.S. in civil engineering from the Florida Institute of Technology, and a Ph.D. in civil engineering from the University of Connecticut. Employed by the General Dynamics Corporation Electric Boat Division for five years, he provided submarine construction support and conducted engineering design and analysis associated with pressure hull and other structures. He then taught for one year at Lafayette College prior to joining the civil engineering faculty at the U.S. Coast Guard Academy, where he has been since 1990. Mazurek is currently a member of the American Railway Engineering & Maintenance-of-way Association Committee 15, and the American Society of Civil Engineers Committee on Blast, Shock, and Vibratory Effects. He has also worked with the Federal Railroad Administration on their bridge-inspection training program. He is a licensed professional engineer in Connecticut and Pennsylvania.

Accessibility

Creating accessible products is a priority for McGraw Hill. We make accessibility and adhering to WCAG AA guidelines a part of our day-to-day development efforts and product roadmaps.

For more information, visit our accessibility page, or contact us at accessibility@mheducation.com

affordability icon

Affordability

Reduce course material costs for your students while still providing full access to everything they need to be successful. It isn't too good to be true - it's Inclusive Access.

Need support?   We're here to help - Get real-world support and resources every step of the way.