

Number Sense

Mathematical symbols can be used in everyday language and slogans.

- **1.** What do you know about the number π ?
- **2.** On March 14 at 1:59, people celebrate Pi Day by eating pie. Why do you think people celebrate on this day at this time?
- 3. Why do you think they eat pie to celebrate Pi Day?
- **4.** *Pi* is defined as the ratio of a circle's circumference to its diameter $\left(\frac{\text{circumference}}{\text{diameter}}\right)$, both of which are also real numbers. Do you think *pi* is a real number? Why?

Lesson 1

Try This

Draw a circle around each whole number in the sets of numbers below.

- **1.** -10, -9.2, -7, -4, -3.1, 0, 2, 2.4, 5, 10
- **2.** -71, -13, -4.6, 10, 13.4, 25, 42, 49.12, 58, 93

Draw a circle around the integers in each set.

- **3.** -10.5, -9, -4, -3.9, 0, 1, 2.6, 3, 4, 7.9
- **4.** -91, -70.07, -33, -3, -1.2, 1, 2, 7.5, 40, 92

Practice

Sort the numbers in each set. Numbers may be used more than once.

5.
$$-10.2, -8, -6\frac{1}{3}, -3, -2, 0, 2.5, 6, 7, 9$$

Integers	Whole Numbers	Both Integers and Whole Numbers	Neither Integers nor Whole Numbers

6. -9, -3.8, -1, 0, 1.2, 3, 4¹/₂, 5, 6, 7

Integers	Whole Numbers	Both Integers and Whole Numbers	Neither Integers nor Whole Numbers

Use the number line to answer the following questions.

7. Which points show numbers that are whole numbers? ______

8. Which points show numbers that are integers? ______

9. Which points show numbers that are not integers or whole numbers?

Reflect

Can a whole number be negative? Explain your reasoning.

Lesson 2

Key Idea					
A fraction is "a number in the form $\frac{a}{b}$, where <i>a</i> and <i>b</i> are integers and <i>b</i> is not 0."					
Each number in the set of whole numbers 0, 1, 2, 3, 4,can be written as a fraction with a denominator of 1: $\frac{0}{1}$, $\frac{1}{1}$, $\frac{2}{1}$, $\frac{3}{1}$, $\frac{4}{1}$,					
Each number in the set of integers, -4 , -3 , -2 , -1 , 0, 1, 2, 3, 4, can be written as a fraction with a denominator of 1:, $-\frac{4}{1}$, $-\frac{3}{1}$, $-\frac{2}{1}$, $-\frac{1}{1}$, $\frac{0}{1}$, $\frac{1}{1}$, $\frac{2}{1}$, $\frac{3}{1}$, $\frac{4}{1}$,					
Equivalent fractions are fractions that have different numerators and denominators but name the same number.					
For example, the whole number 2 can be written as a fraction in many different ways: $2 = \frac{2}{1} = \frac{4}{2} = \frac{6}{3} = \frac{8}{4} = \frac{52}{26} = \frac{200}{100}$					
For example, the integer11 can be written as a fraction in many different ways: $-11 = -\frac{11}{1} = -\frac{22}{2} = -\frac{44}{4} = -\frac{99}{9}$					

Try This

Write each whole number or integer as a fraction with a denominator of 1.

1. 5 = _____

2. -7 = _____

Write each whole number or integer as a fraction with a denominator of 3.

3. 5 = _____

4. -7 = _____

Practice

Write each whole number or integer as a fraction with a denominator of 1.

5. 389 = _____ **6.** -1,078 = _____

Write each whole number or integer as a fraction with a denominator of 4.

7. -24 = ______
8. 100 = _____
9. 7 = ______
10. -53 = _____

Write each whole number or integer as three equivalent fractions using three different denominators.

11. 9 = _____

- **12.** -15 = _____
- **13.** -2 = _____
- **14.** 48 = _____

Write the whole number or integer that each fraction represents.

15.	$-\frac{176}{1} =$	16.	$\frac{33}{3} =$	
17.	$-\frac{2,003}{1} = $	18.	$\frac{80}{10} =$	
Re	flect			
Expla a der	in why an integer or a whole number can be tu nominator of 1.	rned i	nto a fraction with	

Lesson 3

Key Idea
A rational number is "any number that can be written as a fraction." The set of rational numbers includes whole numbers, integers, decimals, and fractions. Decimals that repeat or terminate are rational numbers.
Decimals that do not repeat or terminate are irrational numbers. An irrational number is a real number that cannot be written as a fraction.
$\sqrt{2} = 1.414213562373\dots$
$\sqrt{2}$ is an irrational number, because it does not terminate and it does not repeat.
$\pi = 3.141592653589$
π is an irrational number, because it does not terminate and it does not repeat.
3.1416 is not an irrational number, because it terminates and can be written
as a fraction, 3,927 .
0.714285 is not an irrational number, because it repeats and can be written
as a fraction, $\frac{5}{7}$.

Try This

Draw a circle around each irrational number in the sets of numbers below.

- **1.** $-3.6\overline{7}, \sqrt{5} \pi$ **2.** $\sqrt{8}, \sqrt{9}, \sqrt{10}$
- **3.** √16, 4.1827382871..., 4.8

List the rational and irrational numbers from each set.

4.	7.2708721038, 7.3, 9	5.	10.5, 10.5973291 $, \pi$
	Rational:		Rational:
	Irrational:		Irrational:
6.	√49, 22.82, 22.8168738		

Rational:

Irrational:

Practice

Draw a circle around each irrational number in the sets of numbers below.

7.	-5.45454545, -5, -4.831982019	8.	$\sqrt{12}, \sqrt{14}, \sqrt{16}$
9.	9.873823712, 9.999, 10	10.	−16.18, √20, 100.98392837
List	the rational and irrational numbers from ea	ch set.	
11.	6.3, π, -8.8462719	12 .	−125, 9.179820193, √2
	Rational:		Rational:
	Irrational:		Irrational:
13.	-5. ² , 7.01, -5.2346492	14.	$\frac{1}{2}$, -8.8, 4.24808312
	Rational:		Rational:
	Irrational:		Irrational:
once 15.	A/An can be written as a fraction.		
16.	A/An cannot	be writt	en as a fraction.
17.	The number –5 is an example of a/an		
18.	The number 7.89736291 is an example of	of a/an	
Re	flect		
Riley Expl	<i>r</i> says all square roots are irrational numbers. [ain your reasoning.	Do you a	gree with Riley?

.

Lesson 4

Try This

Draw and label a point on the number line to show the location of each real number.

5. 0.67

Pra Mate poin	actic ch each t marke	e real nu d on th	imber 1 ie num	to a po ber lir	oint on ne will k	the nu pe mat	ımber sched t	line. N :o an it	lote tha tem be	at not e low.	every	
	Α	В	}	С	D	Ε	F		G	Н	1	
			4					<u> </u>			4	
	3	3.1	3.2	3.3	3.4	3 .5	3.6	3.7	3.8	3.9	4	
6.	3.6471				7.	3.38		_		8.	π	
9.	√11				10.	3.5 _						
Orde	er each	set of r	eal nur	nbers	from g	reates	t to lea	ist.				
11.	5.125,	√25, —	$5\frac{1}{2}, 5.\overline{8}$									
12.	-1.7, -	-2, 2.45	58023.	,√2								
13.	$\frac{3}{4}$, -7.2	2, √7, 3.	.9									
14.	10.4, 1	00.04, -	-1.489	7, 1	0.3						-	
15.	3.208,	-8.44,	-3.9, 8	3.1283	2							-
Drav num	Praw and label a point on the number line to show the location of each real umber.											
	-6	-5.9	-5.8	-5.7	-5.6	-5.5	-5.4	-5.3	-5.2	-5.1	-5	
16 .	-5.3							17.	-5.75	85		
18.	-5.51							19.	-5.09			
20.	-5.921	783										

Reflect

Explain why it is always possible to find a rational number between any two numbers on a number line, including decimals. Provide an example with your explanation.

Lesson 5 Review

This week you learned about real numbers, including whole numbers, integers, rational numbers, and irrational numbers. All rational numbers can be written as fractions, but irrational numbers cannot be written as fractions. You can also locate real numbers on a number line.

Lesson 1 Sort the numbers in each set. Numbers may be used more than once.

1. -9, -8.7, -5.6, -4, -2, 1, 3.1, 6, 7.2, 9

Integers	Whole Numbers	Both Integers and Whole Numbers	Neither Integers nor Whole Numbers

2. -232, -49.9, -31, -15, -1.6, 11, 28.1, 79, 82, 90.99

Integers	Whole Numbers	Both Integers and Whole Numbers	Neither Integers nor Whole Numbers

3. -8, -5.8, -5, -2.4, 2, 10, 18.5, 42, 82.5, 180

Integers	Whole Numbers	Both Integers and Whole Numbers	Neither Integers nor Whole Numbers

Lesson 2 Write each whole number or integer as a fraction with a denominator of 1

4. -18 = _____

8. -4 =____

5. 1,098 = _____

Write each whole number or integer as three equivalent fractions using three different denominators.

6. −12 =	=	
7. 90 =		

Lesson 3 Draw a circle around each irrational number in the sets of numbers below.	
9. -11, 1.89821, 12.3	LO. √6, 5. 58 , 5.839108
11. 1.41, 1.41213, 1.1	2. 3.26, 3.3, √32
List the rational and irrational numbers from each set.	
13. 22.7127893, -1.6, $\frac{4}{5}$	4. 22.8, √25 , 11.982918
Rational:	Rational:
Irrational:	Irrational:
15. 0, 1.367901, -0.75, 2.5	.6. π, −1.515371, 7.δ
Rational:	Rational:
Irrational:	Irrational:
Lesson 4 Match each real number to a point on the number line. Note that not every point marked on the number line will be matched to an item below.	

17. 1.64 _____

19. 1.875 _____

20. 1.2 _____

18. 1.172493...

Order each set of real numbers from greatest to least.

21. 6¹/₂, 6.1, 6.92, 6.07912... **22.** -2.17, -4.3, 0.25, -3.0381...

Reflect

What kind of real number is 6.357357357...? Explain your reasoning.

Project Numbers All Around

Create a slogan or play on words using a real number you wrote in the previous weeks. Your slogan can appear on a T-shirt, sign, mug, or comic drawing.

Reflect

Explain how you used real numbers to create your slogan and what makes your slogan funny or clever.

Student Workbook

Engage with your mathematics program!

Explore interactive online games and activities.

Solve complex math problems with digital math tools.

Collaborate with classmates in project-based learning.

www.mheonline.com SE640531