Elementary Statistics: A Step by Step Approach

Elementary Statistics A stepob Step Apposach

Bluman

Correlation to the Common Core State Standards for
Mathematics: Statistics and Probability
CCSS for Mathematics: Statistics and Probability Interpreting Categorical and Quantitative Data (S-ID)

	1. Represent data with plots on the real number line (dot plots, histograms, and box plots).	```Histogram: Chapter 2, p. 64-67, p. 71-76, p. 107, Apply the Concepts 2-2, p. 77 Exercises, p. 78-79, 1-10 Using Technology, p.80-83 Practice 2-3, p. 103, 1 Chapter 2, Review, p. 110-112, 6, 7, 13 Dot Plot: p. 84, p. 92-93 Practice 2-3, p. 103-104, 7, 8 Chapter 2 Review, p. 112, 13 Box Plot: p. 182-186 Practice 3-4, p. 188, 5, 6, 7, 8 Using Technology, p. 189-190 Chapter 3 Review, p. 199, 18, 19```
	2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Median, Mean: Chapter 3, p. 117-122, p. 123124, p. 129 Example 4, p. 123 Example 5, p. 124 Example 14, p. 130 Applying Concepts 3-1, p. 133 Practice p. 134-135, 1-17 Interquartile Range, Chapter 3, p. 171 Practice 3-3, p. 177, 13, 14 Standard Deviation: Chapter 3, p.138-140, p. 143-144, p. 145, p. 146-147, p. 150 Example 4, p. 140-141 Example 5, p. 142-143 Example 6, p. 144-145 Example 7, p. 145-146 Example 8, p. 147-149 Example 9, p. 151 Example 10, p. 151 Practice 3-2, p. 158-159, 1, 4-15 Chapter 3 Review, p. 196-197, 1-9

CCSS for Mathematics: Statistics and Probability		Elementary Statistics, Page Numbers
CSS for Mathematic	a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.	Using a Regression Line to Make a Prediction: Chapter 10, p. 693-694 Example 3, p. 694 Non-Linear Relationships: Chapter 10, p. 695 Example 4, p. 695-697 Example 5, p. 697-698 Practice 10-2, p. 702-703, 1-15
	b. Informally assess the fit of a function by plotting and analyzing residuals.	Residual Plots: Chapter 10, p. 712 Example 2, p. 712-713 Example 3, p. 714
	c. Fit a linear function for a scatter plot that suggests a linear association.	Regression Line Equation: Chapter 10, p. 689690 Example 1, p. 691-692 Example 2, p. 692 Practice 10-2, p. 702-703, 6-15
Interpreting Categorical and Quantitative Data (S-ID)		
Interpret linear models	7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Statistics All Around Us: Use Statistics Chapter 10, p. 694-695 Exercising Care When Using Regression Chapter 10, p. 698 Applying the Concepts 10-2, p. 701
	8. Compute (using technology) and interpret the correlation coefficient of a linear fit.	Using Technology Correlation and Regression Chapter 10, p. 704-708
	9. Distinguish between correlation and causation.	Correlation and Causation: Chapter 10, p. 683684
Making Inferences and Justifying Conclusions (S-IC)		
Understand and evaluate random processes underlying statistical experiments	1. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	Samples and Types of Bias, Chapter 11, p. 746748 Random Sample: Chapter 11, p. 747-748 Example 1, p. 748-750 Systematic Sampling: Chapter 11, p. 750 Example 2, p. 751 Stratified Sampling, Chapter 11, p. 752 Example 3, p. 753-755 Cluster Sampling, Chapter 11, p. 755-756 Other Types of Sampling Techniques, Chapter 11, p. 756-757 Practice 11-1, p. 758-759, 1-11 Chapter 11 Review, p. 781-782, 1-5
	2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?	Simulation: Chapter 11, p. 765-767 Example 1, p. 767-768 Example 2, p. 768-769 Example 3, p. 769-770 Example 4, p. 771-772 Example 5, p. 772-773 Applying the Concepts 11-3, p. 773 Practice 11-3, p. 774, 7-17

CCSS for Mathematics: Statistics and Probability		Elementary Statistics, Page Numbers
Make inferences and justify conclusions from sample surveys, experiments, and observational studies	3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Surveys: Chapter 11, p.756-757, p. 761-763 Observational Studies: Chapter 1, p. 28 Experimental Studies: Chapter 1, p. 29-30 Factors that Can Affect the Outcome of a Study: Chapter 1, p. 30-31 Drawing Conclusions: Chapter 1, p. 31-33 Applying Concepts 1-4, Chapter 1, p. 36 Practice 1-4, p. 37, 7, 8 Chapter 1 Review, p. 45, 19, 20
	4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	Chapter 3, p. 143-144 Example 6, p. 144-145
	5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	Chapter 3, p. 150 Example 9, p. 151 Example 10, p. 151-152 Practice 3-2, p. 158-160, 3, 8, 15, 20, 21
	6. Evaluate reports based on data.	Applying the Concepts 1-1, p. 9 Practice 1-1, p. 10, 18, 19 Applying the Concepts 1-2, p. 17 Applying the Concepts 1-4, p. 36 Practice 1-4, p. 37, 18 Applying the Concepts 2-3, p. 102
Conditional Probability and the Rules of Probability (S-CP)		
Understand independence and conditional probability and use them to interpret data	1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Sample Space: Chapter 4, p. 202, p. 204 Union and Intersection: Historical Note, p. 228 Example 1, p. 203 Example 2, p. 203 Example 3, p. 204 Example 4, p. 204-206 Complement of an Event: Chapter 4, p. 212. p. 213-214 Example 10, p. 212 Example 11, p. 214
	2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	Independent Events: Chapter 4, p. 235 Example 1, p. 235-236 Example 2, p. 236 Example 3, p. 237 Example 4, p. 238
	3. Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	Conditional Probability: Chapter 4, p. 244-245

CCSS for Mathematics: Statistics and Probability	Elementary Statistics, Page Numbers	
Understand independence and conditional probability and use them to interpret data (cont'd)	4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	Finding a Conditional Probability Given Erequencies: Chapter 4, p. 247-249
	5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	Conditional Probability: Chapter, 4 p. 239, p. 244

CCSS for Mathematics: Statistics and Probability	Elementary Statistics, Page Numbers	
Use the rules of probability to compute probabilities of compound events in a uniform probability model	9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems.	Permutations: Chapter 4, p. 260-261, p. 261- 262, p. 262-263 Example 5, p. 261 Example 6, p. 261 Example 7, p. 262

CCSS for Mathematics: Statistics and Probability		Elementary Statistics, Page Numbers
Calculate expected values and use them to solve problems (cont'd)	3. (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.	Probability Distribution for a Random Variable: Chapter 5, p. 288-290 Example 1, p. 290 Example 2, p. 290-291 Speaking of Statistics: Coins, Births and Other Random Events, p. 293-294 Applying the Concepts, 5-1 p. 295 Practice 5-1, p. 296-297, 5, 22, 26-28 Expected Value: Chapter 5, p. 305 Practice 5-2, p. 310, 10-14 Binomial Distribution: Chapter 5, p. 314-316 Example 2, p. 316 Example 10, p. 324-325 Practice 5-3, p. 327, 5 Chapter 5 Review, p. 356-357, 5
	4. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?	Probability Distribution for a Random Variable: Chapter 5, p. 288-290 Example 3, p. 291-292 Speaking of Statistics: Coins, Births and Other Random Events, p. 293-294 Applying the Concepts 5-1, p. 295 Practice 5-1, p. 296-297, 18-21, 23, 24, 25 Expected Value: Chapter 5, p. 305 Practice 5-2, p. 310, 1-5, 12-14 Binomial Distribution: Chapter 5, p. 314-316 Example 3, p. 316-317 Example 4, p. 318 Example 5, p. 319 Example 6, p. 320 Example 7, p. 320-322 Example 8, p. 322-323 Example 9, p. 323-324 Example 11, p. 325 Practice 5-3, p. 327-328, 4, 6-8. 10-16 Chapter 5 Review, p. 356-357, 3, 4, 6, 7, 12-17
Using Probability to Make Decisions (S-MD)		
Use probability to evaluate outcomes of decisions	5. (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.	(addressed in the two points below)
	a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast food restaurant.	Chapter 5, Example 8, p. 306 Example 9, p. 306-307 Practice 5-2, p. 310, 6-8 Chapter 5 Review, p. 356-357, 8, 9, 10

CCSS for Mathematics: Statistics and Probability		Elementary Statistics, Page Numbers
Use probability to evaluate outcomes of decisions (cont'd)	b. Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.	Chapter 5, Example 10, p. 307-308 Practice 5-2, p. 310, 9 Chapter 5 Review, p. 356-357, 3, 4, 6-9, 12-17
	6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	Chapter 5, Example 8, p. 306 Example 10, p. 307-308
	7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).	Chapter 5, Example 9, p. 306-307 Example 10, p. 307-308 Practice 5-2, p. 301, 7-9

