

Elementary Statistics: A Step by Step Approach High School Edition, 1e

Bluman

Correlation to the Common Core State Standards for Mathematics: Statistics and Probability

CCSS for Mathema	tics: Statistics and Probability	Elementary Statistics, Page Numbers
Interpreting Categ	orical and Quantitative Data (S-ID)	
	1. Represent data with plots on the real	Histogram: Chapter 2, p. 64-67, p. 71-76, p. 107,
	number line (dot plots, histograms, and	Apply the Concepts 2-2, p. 77
	box plots).	Exercises, p. 78-79, 1-10
		Using Technology, p.80-83
		Practice 2-3, p. 103, 1
		Chapter 2, Review, p. 110-112, 6, 7, 13
		Dot Plot: p. 84, p. 92-93
		Practice 2-3, p. 103-104, 7, 8
		Chapter 2 Review, p. 112, 13
		Box Plot: p. 182- 186
		Practice 3-4, p. 188, 5, 6, 7, 8
		Using Technology, p. 189-190
		Chapter 3 Review, p. 199, 18, 19
	2. Use statistics appropriate to the	Median, Mean: Chapter 3, p. 117-122, p. 123-
	shape of the data distribution to	124, p. 129
	compare center (median, mean) and	Example 4, p. 123
	spread (interquartile range, standard	Example 5, p. 124
	deviation) of two or more different data	Example 14, p. 130
	sets.	Applying Concepts 3-1, p. 133
		Practice p. 134-135, 1-17
		Interquartile Range, Chapter 3, p. 171
		Practice 3-3, p. 177, 13, 14
		Standard Deviation: Chapter 3, p.138-140, p.
		143-144, p. 145, p. 146-147, p. 150
		Example 4, p. 140-141
		Example 5, p. 142-143
		Example 6, p. 144-145
		Example 7, p. 145-146
		Example 8, p. 147-149
		Example 9, p. 151
		Example 10, p. 151
		Practice 3-2, p. 158-159, 1, 4-15
		Chapter 3 Review, p. 196-197, 1-9

CCSS for Mathema	atics: Statistics and Probability	Elementary Statistics, Page Numbers
	a. Fit a function to the data; use	Using a Regression Line to Make a Prediction:
	functions fitted to data to solve	Chapter 10, p. 693-694
	problems in the context of the data.	Example 3, p. 694
	Use given functions or choose a	Non-Linear Relationships: Chapter 10, p. 695
	function suggested by the context.	Example 4, p. 695-697
	Emphasize linear, quadratic, and	Example 5, p. 697-698
	exponential models.	Practice 10-2, p. 702-703, 1-15
	b. Informally assess the fit of a	Residual Plots: Chapter 10, p. 712
	function by plotting and analyzing	Example 2, p. 712-713
	residuals.	Example 3, p. 714
	c. Fit a linear function for a scatter	Regression Line Equation: Chapter 10, p. 689-
	plot that suggests a linear	690
	association.	Example 1, p. 691-692
		Example 2, p. 692
		Practice 10-2, p. 702-703, 6-15
Interpreting Categ	orical and Quantitative Data (S-ID)	
Interpret linear	7. Interpret the slope (rate of change)	Statistics All Around Us: Use Statistics Chapter
models	and the intercept (constant term)	10, p. 694-695
	of a linear model in the context of the	Exercising Care When Using Regression
	data.	Chapter 10, p. 698
		Applying the Concepts 10-2, p. 701
	8. Compute (using technology) and	Using Technology Correlation and Regression
	interpret the correlation coefficient	Chapter 10. p. 704-708
	of a linear fit.	
	9. Distinguish between correlation and	Correlation and Causation: Chapter 10, p. 683-
	causation.	684
Making Inferences	and Justifying Conclusions (S-IC)	
Understand and	1. Understand statistics as a process for	Samples and Types of Bias, Chapter 11, p. 746-
evaluate random	making inferences about population	748
processes	parameters based on a random sample	Random Sample: Chapter 11, p. 747-748
underlying	from that population.	Example 1, p. 748-750
statistical		Systematic Sampling: Chapter 11, p.750
experiments		Example 2, p. 751
		Stratified Sampling, Chapter 11, p. 752
		Example 3, p. 753-755
		Cluster Sampling, Chapter 11, p. 755-756
		Other Types of Sampling Techniques, Chapter
		11, p. 756-757
		Practice 11-1, p. 758-759, 1-11
		Chapter 11 Review, p. 781-782, 1-5
	2. Decide if a specified model is	Simulation: Chapter 11, p. 765-767
	consistent with results from a given	Example 1, p. 767-768
	data-generating process, e.g., using	Example 2, p. 768-769
	simulation. For example, a model says a	Example 3, p. 769-770
	spinning coin falls heads up with	Example 4, p. 771-772
	probability 0.5. Would a result of 5 tails	Example 5, p. 772-773
	in a row cause you to question the	Applying the Concepts 11-3, p. 773
	model?	Practice 11-3, p. 774, 7-17

CCSS for Mathema	atics: Statistics and Probability	Elementary Statistics, Page Numbers
Make inferences and justify conclusions from sample surveys, experiments, and observational studies	3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Surveys: Chapter 11, p.756-757, p. 761-763 Observational Studies: Chapter 1, p.28 Experimental Studies: Chapter 1, p. 29-30 Factors that Can Affect the Outcome of a Study: Chapter 1, p. 30-31 Drawing Conclusions: Chapter 1, p. 31-33 <i>Applying Concepts 1-4</i> , Chapter 1, p.36 Practice 1-4, p. 37, 7, 8 Chapter 1 Review, p. 45, 19, 20
	4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	Chapter 3, p. 143-144 Example 6, p. 144-145
	 5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. 6. Evaluate reports based on data. 	Chapter 3, p. 150 Example 9, p. 151 Example 10, p. 151-152 Practice 3-2, p. 158-160, 3, 8, 15, 20, 21 Applying the Concepts 1-1, p. 9 Practice 1-1, p. 10, 18, 19 Applying the Concepts 1-2, p. 17 Applying the Concepts 1-4, p. 36 Practice 1-4, p. 37, 18 Applying the Concepts 2-3, p. 102
Conditional Proba	bility and the Rules of Probability (S-CP)	
Understand independence and conditional probability and use them to interpret data	1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Sample Space: Chapter 4, p. 202, p. 204 Union and Intersection: <i>Historical Note</i> , p. 228 Example 1, p. 203 Example 2, p. 203 Example 3, p. 204 Example 4, p. 204-206 Complement of an Event: Chapter 4, p. 212. p. 213-214 Example 10, p. 212 Example 11, p. 214
	 2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. 3. Understand the conditional 	Independent Events: Chapter 4, p. 235 Example 1, p. 235-236 Example 2, p. 236 Example 3, p. 237 Example 4, p. 238 Conditional Probability: Chapter 4, p. 244-245
	probability of A given B as $P(A \text{ and } B)/P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	

CCSS for Mathema	tics: Statistics and Probability	Elementary Statistics, Page Numbers
Understand	4. Construct and interpret two-way	Finding a Conditional Probability Given
independence	frequency tables of data when two	Frequencies: Chapter 4,
and conditional	categories are associated with each	Example 11 p. 247-249
probability and	object being classified. Use the two-way	
use them to	table as a sample space to decide if	
interpret data	events are independent and to	
(cont'd)	approximate conditional probabilities.	
	For example, collect data from a	
	random sample of students in vour	
	school on their favorite subject amona	
	math. science. and Enalish. Estimate the	
	probability that a randomly selected	
	student from vour school will favor	
	science given that the student is in tenth	
	arade. Do the same for other subjects	
	and compare the results.	
	5. Recognize and explain the concepts	Conditional Probability: Chapter, 4 p. 239, p.
	of conditional probability and	244
	independence in everyday language	
	and everyday situations. For example	
	compare the chance of having lung	
	cancer if you are a smoker with the	
	chance of being a smoker if you have	
	luna cancer	
Conditional Probal	bility and the Rules of Probability (S-CP)	
Use the rules of	6. Find the conditional probability of A	Example 9, p. 246
probability to	given B as the fraction of B 's outcomes	Example 10, p. 246-247
compute	that also belong to A, and interpret the	Practice 4-3, p. 253-254, 2-23
probabilities of	answer in terms of the model.	
compound	7. Apply the Addition Rule, $P(A \text{ or } B) =$	Addition Rule: Chapter 4, p. 225, p. 227-228
events in a	P(A) + P(B) - P(A and B) and interpret	Example 3 p 225-226
uniform	the answer in terms of the model	Example 4 p 226
probability model		Example 5 p 227
		Example 6, p. 228-229
		Example 7 n 229
		Example 8 n 229-230
		Practice 4-2 n 232-233 3-14
		Chapter 4 Review p 282-283 5-8
	8 (+) Apply the general Multiplication	Multiplication Rule: Chapter 4 p 235 p 238-
	Rule in a uniform probability model $P(\Delta)$	239
	and $B = P(\Delta)P(B \Delta) = P(B)P(\Delta B)$ and	Example 1 p 235-236
	interpret the answer in terms of the	Example 1, p. 200 200 Example 2 n 236
	model	Example 2, p. 200 Example 3, p. 237
	model.	Example 5, $p. 237$ Example 5, $p. 239_2/10$
		Example 5, $p. 253-240$
		$P_{ractice} = 0.240$
		Chapter & Deview p. 202-204, 2-20
		Chapter 4 Review, p. 283-284, 9-14

CCSS for Mathema	tics: Statistics and Probability	Elementary Statistics, Page Numbers
Use the rules of	9. (+) Use permutations and	Permutations: Chapter 4, p. 260-261, p. 261-
probability to	combinations to compute probabilities	262, p. 262-263
compute	of compound events and solve	Example 5, p. 261
probabilities of	problems.	Example 6, p. 261
compound		Example 7, p. 262
events in a		Example 8, p. 262
uniform		Example 9. p. 263
probability model		Combinations: Chapter 4, p. 263-264, p. 264
		Example 10, p. 264
		Example 11, p. 265
		Example 12, p. 265
		Example 13, p. 265-266
		Practice 4-4, p. 268-269, 1-31
		Probability and Counting Rules: Chapter 4, p.
		272
		Example 1, p. 272
		Example 2 p 272-273
		Example 2, p. 272 278 Example 3 p 273
		Example 3, p. 273 Example 4 p 274
		Example 5 p_{274} -275
		Applying Concepts 4-5 p 276
		Practice 4-5 n 277 1-8
		Chapter 4 Review n 284-285 15-22
Using Probability t	o Make Decisions (S-MD)	onapiel 1 (criew, p. 201 200, 10 22
Calculate	1. (+) Define a random variable for a	Random Variables and Probability
expected values	quantity of interest by assigning a	Distributions: Chapter 5, p.288-290
and use them to	numerical value to each event in a	Example 1, p. 290
solve problems	sample space; graph the corresponding	Example 2, p. 290-291
	probability distribution using the same	Example 3, p. 291-292
	graphical	Practice 5-1, p. 296-297, 22-24
	displays as for data distributions.	
	2. (+) Calculate the expected value of a	Expected Value: Chapter 5, p. 305
	random variable; interpret it as the mean	Example 8, p. 306
	of the probability distribution.	Example 9, p. 306-307
		Example 10, p. 307-308
		Applying the Concepts 5-2, p. 309
		Practice 5-2, p. 310, 1-14
		Chapter 5 Review, p. 356-237 , 6-10

CCSS for Mathema	tics: Statistics and Probability	Elementary Statistics, Page Numbers
Calculate	3. (+) Develop a probability distribution	Probability Distribution for a Random Variable:
expected values	for a random variable defined for a	Chapter 5, p. 288-290
and use them to	sample space in which theoretical	Example 1, p. 290
solve problems	probabilities can be calculated; find the	Example 2, p. 290-291
(cont'd)	expected value. For example, find the	Speaking of Statistics: Coins, Births and Other
	theoretical probability distribution for	Random Events, p. 293-294
	the number of correct answers obtained	Applying the Concepts, 5-1 p. 295
	by guessing on all five questions of a	Practice 5-1, p. 296-297, 5, 22, 26-28
	multiple-choice test where each	Expected Value: Chapter 5, p. 305
	question has four choices, and find the	Practice 5-2, p. 310, 10-14
	expected grade under various grading	Binomial Distribution: Chapter 5, p. 314-316
	schemes.	Example 2, p. 316
		Example 10, p. 324-325
		Practice 5-3, p. 327, 5
		Chapter 5 Review, p. 356-357, 5
	4. (+) Develop a probability distribution	Probability Distribution for a Random Variable:
	for a random variable defined for a	Chapter 5, p. 288-290
	sample space in which probabilities are	Example 3, p. 291-292
	assigned empirically; find the expected	Speaking of Statistics: Coins, Births and Other
	value. For example, find a current data	Random Events, p. 293-294
	distribution on the number of TV sets	Applying the Concepts 5-1, p.295
	per household in the United States, and	Practice 5-1, p. 296-297, 18-21, 23, 24, 25
	calculate the expected number of sets	Expected Value: Chapter 5, p. 305
	per household. How many TV sets	Practice 5-2, p. 310, 1-5, 12-14
	would you expect to find in 100	Binomial Distribution: Chapter 5, p. 314-316
	randomly selected households?	Example 3, p. 316-317
		Example 4, p. 318
		Example 5, p. 319
		Example 6, p. 320
		Example 7. p. 320-322
		Example 8, p. 322-323
		Example 9 p 323-324
		Example 11 p 325
		Practice 5-3 n 327-328 4 6-8 10-16
		Chapter 5 Review p 356-357 3 4 6 7 12-17
Using Probability t	o Make Decisions (S-MD)	
Use probability	5. (+) Weigh the possible outcomes of a	(addressed in the two points below)
to evaluate	decision by assigning probabilities to	
outcomes of	payoff values and finding expected	
decisions	values.	
	a. Find the expected payoff for a game	Chapter 5, Example 8, p. 306
	of chance. For example, find the	Example 9, p. 306-307
	expected winnings from a state lotterv	Practice 5-2, p. 310, 6-8
	ticket or a game at a fast food	Chapter 5 Review, p. 356-357, 8, 9, 10
	restaurant.	

CCSS for Mathema	atics: Statistics and Probability	Elementary Statistics, Page Numbers
Use probability	b. Evaluate and compare strategies on	Chapter 5, Example 10, p. 307-308
to evaluate	the basis of expected values. For	Practice 5-2, p. 310, 9
outcomes of	example, compare a high-deductible	Chapter 5 Review, p. 356-357, 3, 4, 6-9, 12-17
decisions	versus a low-deductible automobile	
(cont'd)	insurance policy using various, but	
	reasonable, chances of having a minor	
	or a major accident.	
	6. (+) Use probabilities to make fair	Chapter 5, Example 8, p. 306
	decisions (e.g., drawing by lots, using a	Example 10, p. 307-308
	random number generator).	
	7. (+) Analyze decisions and strategies	Chapter 5, Example 9, p. 306-307
	using probability concepts (e.g., product	Example 10, p. 307-308
	testing, medical testing, pulling a	Practice 5-2, p. 301, 7-9
	hockey goalie at the end of a game).	