
NGSS CORRELATION GUIDE

Zoology

By Stephen A. Miller & John P. Harley 10^{th} Edition, © 2016 ISBN 978-0-07-667895-2

$NGSS\ Correlation \\ Zoology,\ (10e)$ by Stephen A. Miller & John P. Harley

Next Generation Science Standards Life Science Performance Expectations HS-LS1 From Molecules to Organisms	Zoology, 10 th Edition, ©2016	
HS-LS1 From Molecules to Organisms: Structures and Processes		
HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	25-26, 36, 43-47	
HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	26-33, 176-178, 202-203, 205-207, 210- 212, 224-227, 244-245, 279-280, 286- 290, 305, 323-324, 341-348, 360-363, 381-385, 399-403, 419-423, 435-453, 455-482, 485-504, 506-526, 529-551, 553-573	
HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	131, 420-422, 423, 487-502, 553-573	
HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	26, 36, 39-41, 123-127	
HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	Can be incorporated into the following: 94, 101, 103, 104	
HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon—based molecules.	43-47	
HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.	Can be incorporated into the following: 22, 90, 101, 103, 104, 554	

Next Generation Science Standards Life Science Performance Expectations	$egin{aligned} ext{Zoology, } 10^{ ext{th}} \ ext{Edition, } ^{ ext{@}} 2016 \end{aligned}$
HS-LS2 Ecosystems: Interactions, Enemonia HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	ergy, and Dynamics 95-96
HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	96-97, 107-110
HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic	101-104
HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	101-104
HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	103-104
HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	4-5, 100-101
HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.*	Can be incorporated into the following: 7, 9, 107–110 How Do We Know? 106–107 Wildlife Alert 8, 55–56, 109, 167, 347, 378–379
HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	Can be incorporated into the following: 403-405, 431-433

Next Generation Science Standards Life Science Performance Expectations	$egin{aligned} ext{Zoology, } 10^{ ext{th}} \ ext{Edition, } ^{ ext{@}} 2016 \end{aligned}$	
HS-LS3 Heredity: Inheritance and Var HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	riation of Traits 36-38, 41-43, 50-55	
HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	41-43, 47-52, 64, 65, 82-83, 90-91	
HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	78-86	
HS-LS4 Biological Evolution: Unity and Diversity		
HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	3-5, 60, 67-73, 114-120, 143, 150-151, 168, 170, 172, 194, 216, 220-222, 237-234, 241-242, 252-253, 298-299, 301-302, 316-317, 326-327, 330-333, 348-349, 352-354, 368-369, 371-374, 387, 389-392, 409-411, 427-431 Evolutionary Insights 75-76, 125, 328, 349-350 How Do We Know? 4, 74	
HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the	2-3, 63-67, 78-79, 83-86, 90-91 2-3, 64-66, 78-86, 83-84	
and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	2-3, 04-00, 10-00, 03-04	

Next Generation Science Standards Life Science Performance Expectations	$egin{aligned} \mathbf{Zoology,10}^{ ext{th}}\ \mathbf{Edition,}^{ ext{@}}2016 \end{aligned}$
HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	2-3, 62-63, 64-66, 83-84
HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	64-65, 83-84, 86-87, 410-411 Evolutionary Insights 88-89 Wildlife Alert 8
HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*	Can be incorporated into the following: 7, 9, 107–110 How Do We Know? 106–107 Wildlife Alert 8, 55–56, 109, 167, 347, 378–379