NGSS CORRELATION GUIDE

for Inquiry into Life

Reinforced Binding

By Sylvia Mader & Michael Windelspecht 15th Edition, © 2017

NGSS Correlation Inquiry Into Life, (15e) by Sylvia Mader & Michael Windelspecht

Next Generation Science Standards Life Science Performance Expectations	Mader's Inquiry into Life 15 [™] Edition, ©2017	
Science Feriormance Expectations	is Edition, ©2017	
HS-LS1 From Molecules to Organisms: Structures		
HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	38-39, 498-499, 502-507	
HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	4, 191-197, 198-200, 206-207, 222-224, 286-287, 289 Case Study 190	
HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	5, 204-206, 393, 397, 398	
HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	84-88, 150-151, 153-154, 174-175, 442-446, 628	
HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	4, 100-101, 109, 128-139	
HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	4, 28-39, 102-103, 504-507	
HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.	4, 100-101, 109-110, 114-122, 124 Science in Your Life: Health 123	
HS-LS2 Ecosystems: Interactions, Energy, and Dynamics		
HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	4, 693, 695-698, 708-710 Case Study 706	

Next Generation Science Standards Life Science Performance Expectations	Mader's Inquiry into Life 15 [™] Edition, ©2017
HS-LS2-2. Use mathematical	4, 695-698, 702-703, 708-710
representations to support and revise explanations based on evidence about factors affecting biodiversity and	Case Study 706
populations in ecosystems of different scales.	
HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	4, 707-715, 717
HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	4, 707-715, 717
HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the	139-140, 717-718 Science in Your Life: Ecology 719
cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	Science III Tour Life. Leology 713
HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	696, 697-698, 702-703 Case Study 690
HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on	757-761 Case Study 743
the environment and biodiversity.*	Science in Your Life: Ecology 719
HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.	685-687 Case Study 673
HS-LS3 Heredity: Inheritance and Variation of Tra	
HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	5, 465, 466, 483, 497, 502-504 Case Study 464
HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	5, 89, 91, 511-512, 548

Next Generation Science Standards Life Science Performance Expectations	Mader's Inquiry into Life 15 [™] Edition, ©2017	
HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	465-479, 483-487, 546-547 Case Study 464	
HS-LS4 Biological Evolution: Unity and Diversity		
HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	537-538, 539-544, 557-558, 664	
HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	5, 538, 548, 549-552 Case Study 535 Science in Your Life: Health 553	
HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	5, 545, 546-547 Case Study 535 Science in Your Life: Health 553 Science in Your Life: Scientific Inquiry 6	
HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	5, 538, 544-546, 549-552 Case Study 535 Science in Your Life: Health 553 Science in Your Life: Scientific Inquiry 6	
HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	13-14, 538, 542-543, 702-703, 749-754 Science in Your Life: Ecology 630 Science in Your Life: Health 553 Case Study 535	
HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.*	754-757 Science in Your Life: Ecology 756-757 Science in Your Life: Scientific Inquiry 750	