

© 2017

PERFORMANCE EXPECTATIONS	PAGE REFERENCES
FROM MOLECULES TO ORGANISMS: ST	RUCTURES AND PROCESSES
Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	Activity: Transcription and Translation, Chapter 12 Section 3
	Systems of specialized cells within organisms help them perform the essential functions of life.
	Student Edition: 256–257, 258, 632–638, 639–640, 694, 947–948, 962–963, 997–998, 1085–1089
	Teacher Edition: DC 344, 962, 108/5; SP 633, 638, 997
PERFORMANCE EXPECTATIONS	PAGE REFERENCES
Continued from previous cell	Continued from previous cell
Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.	All cells contain genetic information in the form of DNA molecules.
	Student Edition: 171, 186, 193, 247, 249, 270, 272, 336–341, 342–345
	Teacher Edition: CT 338; DC 171, 343, 340; MI 336; WS 336
Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	Activity: Hierarchical Organization in Plants, Chapter 22 Section 1, Chapter 22 Section 2
	Multicellular organisms have a hierarchical structural organization
	Student Edition: 632–638, 639–640, 642, 728, 739, 747, 768, 796, 865, 886, 947–948, 962–967, 968–972, 973–976, 992–998, 1000–1003, 1005–1007, 1020–1024, 1031–1037
	Teacher Edition: CT 642; DC 739; DE 886, 1001; MI 968; SP 1003
Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis in living organisms.	Activity: Investigate Osmosis, Chapter 7 Section 4
	Feedback mechanisms maintain a living system's internal conditions.
	Student Edition: 10, 203–206, 547, 556, 636–638, 639–640, 642, 644–647, 727, 739, 747, 767, 795, 825, 854, 884, 938–939, 946, 969–970, 992, 1005–1007, 1032–1037
	Teacher Edition: DC 206, 636, 1032, 1033, 1037; SP 1032
Use a model to illustrate the role of the cell cycle and differentiation in producing and maintaining complex organisms.	Student Edition: 242, 246-247, 248-252, 253-257, 258, 344
	Teacher Edition: DC 344; DE 249; FA 257; MI 253; SP 246

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	Activity: Modeling Photosynthesis, Chapter 8 Section 2
	The process of photosynthesis converts light energy
	Student Edition: 41–44, 220, 222–227, 233, 235, 644–645
	Teacher Edition: CT 224; WS 219, 224

PERFORMANCE EXPECTATIONS	PAGE REFERENCES	
Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	Activity: Exploring Macromolecules, Chapter 6 Section 4	
	The sugar molecules thus formed contain carbon, hydrogen, and oxygen. Student Edition: 166–171, 222, 226, 229–232	
	Teacher Edition: FA 171	
	As matter and energy flow through different organizational levels of living systems	
	Student Edition: 41–44, 45–49, 218–220, 222, 229–232, 1026–1029	
	Teacher Edition: FA 1030; MI 1025	
Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.	Activity: Modeling Cellular Respiration, Chapter 8 Section 3	
	As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products.	
	Student Edition: 220, 228–233	
	Teacher Edition: WS 229	
	As a result of these chemical reactions, energy is transferred.	
	Student Edition: 220, 228–233	
	Teacher Edition: AC 228; CT 221; DE 220; FA 233	
Obtain, evaluate, and communicate information	Student Edition:	
about (1) viral and bacterial reproduction and adaptation, (2) the body's primary defenses	429, 520, 527-531, 533, 1084-1091	
against infection, and (3) how these features	Teacher Edition: DC 531; DE 429; FA 524	
impact the design of effective treatment.		
ECOSYSTEMS: INTERACTIONS, ENERGY AND DYNAMICS		
Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity, biodiversity and populations of ecosystems at different scales.	Activity: Carrying Capacity of Nectar-Feeding Bats, Chapter 4 Section 1	
	Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support.	
	Student Edition: 94–99, 105	
	Teacher Edition: AC 97; DC 94	

PERFORMANCE EXPECTATIONS	PAGE REFERENCES
Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	Activity: Ecological Pyramids, Chapter 2 Section 2
	Plants or algae form the lowest level of the food web.
	Student Edition: 41-44, 45-49, 219-220
	Teacher Edition: SP 44
Evaluate the claims, evidence and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of	Activity: Local Ecosystem Dynamics, Chapter 2 Section 1, Chapter 3 Section 1, Chapter 5 Section 2
organisms in stable conditions, but changing	Student Edition: 34–40, 62–64, 94–98, 123–128
conditions may result in a new ecosystem.	Teacher Edition: CT 62; DC 62; DE 126
Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	Activity: Microbeads, Mega-Problem, Chapter 3 Section 3, Chapter 5 Section 2, Chapter 5 Section 3
	Ecosystem Dynamics, Functioning, and Resilience
	Student Edition: 120, 122–128, 744, 801, 833, 841, 860, 869
	Teacher Edition: CT 126; DC 126; MI 122; SP 125; WS 744, 801, 841
	Biodiversity and Humans
	Student Edition: 116–118, 118–120, 122–123, 123–128, 129–135, 131–135
	Teacher Edition: DE 118; MI 116; RS 118, 123
	Developing Possible Solutions
	Science and Engineering Practices Handbook: Practice 1, Practice 6
	Student Edition: 129–135
	Teacher Edition: DC 133; WS 120, 133
HEREDITY: INHERITANCE AND VARIATION	ON OF TRAITS
Formulate, refine, and evaluate questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	Activity: Meiosis, Chapter 10 Section 1
	All cells contain genetic information in the form of DNA molecules.
	Student Edition: 193, 247, 249, 270, 272, 336–341, 342–344
	Teacher Edition: CT 338; DC 338, 344; MI 336; WS 193, 336
	Chromosomes
	Student Edition: 247, 270, 329–332, 336–341, 342–345, 373
	Teacher Edition: DC 332; MI 270; WS 247

PERFORMANCE EXPECTATIONS	PAGE REFERENCES
Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	Activity: Investigating Genetic Variation, Chapter 10 Section 1, Chapter 10 Section 2, Chapter 10 Section 3, Chapter 11 Section 3, Chapter 12 Section 4
	In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation.
	Student Edition:
	271–276, 283–285, 312–313, 342–349
	Teacher Edition: CT 349; DC 272, 276; FA 285; MI 283; RS 283
	Environmental factors also affect expression of traits.
	Student Edition: 309–310
	Teacher Edition: DE 309
Apply concepts of statistics and probability to explain the variation and distribution of expressed	Activity: Punnett Squares, Chapter 10 Section 2
traits in a population.	Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population.
	Student Edition: 280-282, 309-310
	Teacher Edition: DC 282; DE 309
BIOLOGICAL EVOLUTION: UNITY AND D	IVERSITY
Analyze and interpret scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	Activity: Evidence for Evolution, Chapter 15 Section 2, Chapter 17 Section 2
	Genetic information
	Student Edition: 423-427, 491, 493-495
	Teacher Edition: CT 492; DC 493; MI 491; SP 427
Construct an explanation based on evidence that biological diversity is influenced by (1) the potential for a species to increase in number, (2)	Activity: Pest Management and Natural Selection, Chapter 15 Section 1, Chapter 15 Section 2
the heritable genetic variation of individuals in a	Natural selection
 species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. 	Student Edition: 420–422, 434-436
	Teacher Edition: DC 421
	Adaptation
	Student Edition: 420–422, 431–436
	Teacher Edition: CB 439; DE 420

PERFORMANCE EXPECTATIONS	PAGE REFERENCES
Apply concepts of statistics and probability to	Activity: Could You Beat Natural Selection Using
support explanations that populations of organisms adapt when an advantageous heritable	Camouflage?, Chapter 15 Section 1
trait increases in proportion to organisms lacking this trait.	Natural selection
	Student Edition: 420-422, 434-436
	Teacher Edition: SP 434
	Adaptation
	Student Edition: 428-430
Construct an explanation based on evidence for	Activity: Can Scientists Model Natural Selection?,
how natural selection and other mechanisms lead to genetic changes in populations.	Chapter 15 Section 2
	Adaptation
	Student Edition: 428–430
	Teacher Edition: DC 428; DE 429; FA 430
Evaluate evidence supporting claims that changes in environmental conditions can affect the distribution of traits in a population causing: (1)	Activity: Evaluating Impacts of Environmental Change on Populations, Chapter 5 Section 2
increases in the number of individuals of some	Adaptation
species, (2) the emergence of new species over time, and (3) the extinction of other species.	Student Edition: 122–128, 438
	Teacher Edition: DC 125; DE 122; SP 125; WS 122, 124, 439