Contents in Brief

Chapter 0
Preparing for Advanced Algebra
Chapter 1
Linear Equations
\section*{Chapter 2}
Relations and Functions
Chapter 3
Quadratic Functions
Chapter 4
Polynomials and Polynomial Functions
Chapter 5
Inverses and Radical Functions
Chapter 6
Exponential and Logarithmic Functions
Chapter 7
Rational Functions
Chapter 8
Statistics and Probability
Chapter 9
Trigonometric Functions
\section*{Chapter 10}
Trigonometric Identities and Equations

Authors

Our lead authors ensure that the Macmillan/McGraw-Hill and Glencoe/McGraw-Hill mathematics programs are truly vertically aligned by beginning with the end in mind - success in Algebra 1 and beyond. By "backmapping" the content from the high school programs, all of our mathematics programs are well articulated in their scope and sequence.

LEAD AUTHORS

John A. Carter, Ph.D.
Mathematics Teacher WINNETKA, ILLINOIS

Areas of Expertise: Using technology and manipulatives to visualize concepts; mathematics achievement of Englishlanguage learners

Gilbert J. Cuevas, Ph.D.
Professor of Mathematics
Education, Texas State UniversitySan Marcos
SAN MARCOS, TEXAS
Areas of Expertise:
Applying concepts and skills in mathematically rich contexts; mathematical representations; use of technology in the development of geometric thinking

Roger Day, Ph.D., NBCT
Mathematics Department Chairperson, Pontiac Township High School PONTIAC, ILLINOIS

Areas of Expertise: Understanding and applying probability and statistics; mathematics teacher education

In Memoriam

Carol Malloy, Ph.D.
Dr. Carol Malloy was a fervent supporter of mathematics education. She was a Professor at the University of North Carolina, Chapel Hill, NCTM Board of Directors member, President of the Benjamin Banneker Association (BBA), and 2013 BBA Lifetime Achievement Award for Mathematics winner. She joined McGraw-Hill in 1996. Her influence significantly improved our programs' focus on real-world problem solving and equity. We will miss her inspiration and passion for education.

PROGRAM AUTHORS

Berchie Holliday, Ed.D.

National Mathematics
Consultant
SILVER SPRING, MARYLAND
Areas of Expertise:
Using mathematics to model and understand real-world data; the effect of graphics on mathematical understanding

Ruth Casey

Regional Teacher Partner university of kentucky

Areas of Expertise:

Graphing technology and mathematics

CONTRIBUTING AUTHORS

Dinah Zike [FOLDABIES
Educational Consultant Dinah-Might Activities, Inc. SAN ANTONIO, TEXAS

Jay McTighe

Educational Author and
Consultant
COLUMBIA, MARYLAND

Consultants and Reviewers

These professionals were instrumental in providing valuable input and suggestions for improving the effectiveness of the mathematics instruction.

LEAD CONSULTANT

Viken Hovsepian

Professor of Mathematics
Rio Hondo College WHITTIER, CALIFORNIA

CONSULTANTS

MATHEMATICAL CONTENT

Grant A. Fraser, Ph.D.
Professor of Mathematics
California State University, Los Angeles LOS ANGELES, CALIFORNIA
Arthur K. Wayman, Ph.D.
Professor of Mathematics Emeritus
California State University, Long Beach
LONG BEACH, CALIFORNIA

GIFTED AND TALENTED

Shelbi K. Cole
Research Assistant University of Connecticut STORRS, CONNECTICUT

COLLEGE READINESS

Robert Lee Kimball, Jr.
Department Head, Math and Physics
Wake Technical Community College RALEIGH, NORTH CAROLINA

DIFFERENTIATION FOR ENGLISH-LANGUAGE LEARNERS

Susana Davidenko
State University of New York CORTLAND, NEW YORK
Alfredo Gómez
Mathematics/ESL Teacher George W. Fowler High School SYRACUSE, NEW YORK

GRAPHING CALCULATOR

Jerry Cummins
Former President
National Council of Supervisors of Mathematics
WESTERN SPRINGS, ILLINOIS

MATHEMATICAL FLUENCY

Robert M. Capraro
Associate Professor
Texas A\&M University
COLLEGE STATION, TEXAS

PRE-AP

Dixie Ross
Lead Teacher for Advanced Placement Mathematics
Pflugerville High School
PFLUGERVILLE, TEXAS

READING AND WRITING

ReLeah Cossett Lent
Author and Educational Consultant
MORGANTON, GEORGIA
Lynn T. Havens
Director of Project CRISS
KALISPELL, MONTANA

REVIEWERS

Corey Andreasen

Mathematics Teacher
North High School SHEBOYGAN, WISCONSIN

Mark B. Baetz
Mathematics Coordinating
Teacher
Salem City Schools
SALEM, VIRGINIA
Kathryn Ballin
Mathematics Supervisor
Newark Public Schools
NEWARK, NEW JERSEY
Kevin C. Barhorst
Mathematics Department Chair
Independence High School
COLUMBUS, OHIO
Brenda S. Berg
Mathematics Teacher
Carbondale Community High School
CARBONDALE, ILLINOIS
Dawn Brown
Mathematics Department Chair Kenmore West High School BUFFALO, NEW YORK

Sheryl Pernell Clayton
Mathematics Teacher
Hume Fogg Magnet School
NASHVILLE, TENNESSEE
Bob Coleman
Mathematics Teacher
Cobb Middle School
TALLAHASSEE, FLORIDA
Jane E. Cotts
Mathematics Teacher
O'Fallon Township High School
O'FALLON, ILLINOIS

Michael D. Cuddy

 Mathematics InstructorZypherhills High School ZYPHERHILLS, FLORIDA

Melissa M. Dalton, NBCT
Mathematics Instructor
Rural Retreat High School RURAL RETREAT, VIRGINIA

Tina S. Dohm
Mathematics Teacher
Naperville Central High School
NAPERVILLE, ILLINOIS
Laurie L.E. Ferrari
Mathematics Teacher
L'Anse Creuse High School-North
MACOMB, MICHIGAN
Steve Freshour
Mathematics Teacher
Parkersburg South High School
PARKERSBURG, WEST VIRGINIA
Shirley D. Glover
Mathematics Teacher
TC Roberson High School
ASHEVILLE, NORTH CAROLINA
Caroline W. Greenough Mathematics Teacher
Cape Fear Academy
WILMINGTON, NORTH CAROLINA
Susan Hack, NBCT
Mathematics Teacher
Oldham County High School
BUCKNER, KENTUCKY
Michelle Hanneman
Mathematics Teacher
Moore High School MOORE, OKLAHOMA

Theresalynn Haynes
Mathematics Teacher Glenbard East High School LOMBARD, ILLINOIS

Sandra Hester
Mathematics Teacher/AIG Specialist
North Henderson High School
HENDERSONVILLE, NORTH
CAROLINA
Jacob K. Holloway
Mathematics Teacher
Capitol Heights Junior High School
MONTGOMERY, ALABAMA

Robert Hopp

Mathematics Teacher
Harrison High School
HARRISON, MICHIGAN
Eileen Howanitz
Mathematics Teacher/Department Chairperson
Valley View High School
ARCHBALD, PENNSYLVANIA
Charles R. Howard, NBCT
Mathematics Teacher
Tuscola High School
WAYNESVILLE, NORTH CAROLINA
Sue Hvizdos
Mathematics Department
Chairperson
Wheeling Park High School
WHEELING, WEST VIRGINIA
Elaine Keller
Mathematics Teacher
Mathematics Curriculum Director K-12
Northwest Local Schools
CANAL FULTON, OHIO
Sheila A. Kotter
Mathematics Educator
River Ridge High School
NEW PORT RICHEY, FLORIDA

Frank Lear

Mathematics Department Chair
Cleveland High School
CLEVELAND, TENNESSEE
Jennifer Lewis
Mathematics Teacher
Triad High School
TROY, ILLINOIS
Catherine McCarthy
Mathematics Teacher
Glen Ridge High School
GLEN RIDGE, NEW JERSEY
Jacqueline Palmquist
Mathematics Department Chair
Waubonsie Valley High School
AURORA, ILLINOIS
Thom Schacher
Mathematics Teacher
Otsego High School
OTSEGO, MICHIGAN
Laurie Shappee
Teacher/Mathematics Coordinator
Larson Middle School
TROY, MICHIGAN
Jennifer J. Southers
Mathematics Teacher
Hillcrest High School
SIMPSONVILLE, SOUTH CAROLINA
Sue Steinbeck
Mathematics Department Chair
Parkersburg High School
PARKERSBURG, WEST VIRGINIA
Kathleen D. Van Sise
Mathematics Teacher
Mandarin High School
JACKSONVILLE, FLORIDA
Karen Wiedman
Mathematics Teacher
Taylorville High School
TAYLORVILLE, ILLINOIS

Digital Tools to Enhance Your Learning

Students today have an unprecedented access to and appetite for technology and new media. You see technology as your friend and rely on it to study, work, play, relax, and communicate.

You are accustomed to the role that computers play in today's world. You are the first generation whose primary educational tool is a computer or a cell phone. The eStudentEdition gives you access to your math curriculum anytime, anywhere.

Investigate

Sketchpad

Discover concepts using The Geometer's Sketchpad ${ }^{\circledR}$.

Vocabulary tools include fun Vocabulary Review Games.

Tools

 enhance understanding through exploration.
The Geometer's Sketchpad

The Geometer's Sketchpad gives you a tangible, visual way to see the math in action through dynamic model manipulation of lines, shapes, and functions.

eToolkit

eToolkit helps you to use virtual manipulative's to extend your learning beyond the classroom by modifying concrete models in a real-time, interactive format focused on problem-based learning.

Learn
 LearnSmart

 Topic based online assessment

Animations

 illustrate key concepts through step-by-step tutorials and videos.

Tutors

See and hear a teacher explain how to solve problems.

eStudentEdition

Use your eStudentEdition to access your print text 24/7. This interactive eBook gives you access to all the resources that help you learn the concepts. You can take notes, highlight, digitally write on the pages, and bookmark where you are.

Interactive Student Guide

Interactive Student Guide is a dynamic resource to help you meet the challenges of content standards.

This guide works together with the student edition to ensure that you can reflect on comprehension and application, apply math concepts to the real world, and internalize concepts to develop "second nature" recall.

Adaptive Learning

LEARNSMART*

LearnSmart is your online test-prep solution with adaptive capability and resources for end-of-course assessment. Through a series of adaptive questions, LearnSmart identifies areas where you need to focus your learning. It provides you with learning resources such as slides, videos, kaleidoscopes, and label games to encourage you to review material again. This adaptive learning will help increase your likelihood that you will retain your new knowledge.

LearnSmart can be used as a self-study tool or it can be assigned to you by your teacher through your ConnectED platform.

ALEKS ${ }^{\circ}$

Through a cycle of assessment and learning, *ALEKS determines the topics that you are ready to learn next and develops a personalized learning path for you. ALEKS provides you with real-time, actionable data that informs you what you need to learn. It will help you review and master the skills needed to be successful in your math class. Use your ALEKS Pie to see a snapshot of your current progress of the course. Click on the Pie slice to see the number of topics mastered and ready to learn next.

Use the timeline to watch your progress toward your learning goals, and if needed you can toggle between English and Spanish translations of the content and interface.

[^0]
Get Started on Chapter 0 P2
Pretest P3
0-1 Representing Functions P4
0-2 FOIL P6
0-3 Factoring Polynomials P7
0-4 Counting Techniques P9
0-5 Adding Probabilities P13
0-6 Multiplying Probabilities P16
0-7 Congruent and Similar Figures P20
0-8 The Pythagorean Theorem P22
0-9 Measures of Center, Spread, and Position P24
Posttest P29

Go Onlined

connectED.mcgraw-hill.com

Get Started on Chapter 1 2
1-1 Solving Linear Equations 5
1-2 Solving Linear Inequalities 13
Extend 1-2 Algebra Lab: Interval and Set-Builder Notation 20
1-3 Rate of Change and Slope 21
1-4 Writing Linear Equations 28
1-5 Graphing Linear Inequalities 35
Mid-Chapter Quiz 40
Explore 1-6 Graphing Technology Lab: Intersections of Graphs 41
1-6 Solving Systems of Equations 42
1-7 Solving Systems of Inequalities by Graphing 52
Extend 1-7 Graphing Technology Lab: Systems of Linear Inequalities 59
1-8 Optimization with Linear Programming 60
1-9 Solving Systems of Equations in Three Variables 67
ASSESSMENT
Study Guide and Review 74
Practice Test 79
Performance Task 80
Preparing for Assessment, Test-Taking Strategy 81
Preparing for Assessment, Cumulative Review 82

Geometer's Sketchpad ${ }^{\circledR}$ allows you to interact with functions in a visual way. Investigate systems of equations and inequalities with sketches in ConnectED.

Get Started on Chapter 2 84
2-1 Functions and Continuity 87
2-2 Linearity and Symmetry 95
2-3 Extrema and End Behavior 103
2-4 Sketching Graphs of Functions 111
Mid-Chapter Quiz 117
2-5 Graphing Special Functions 118
2-6 Transformations of Functions 125
2-7 Solving Equations by Graphing 133
ASSESSMENT
Study Guide and Review 138
Practice Test 143
Performance Task 144
Preparing for Assessment, Test-Taking Strategy 145
Preparing for Assessment, Cumulative Review 146

With the Graphing Tools in ConnectED, you can explore how changing parameters affects the graph of a function or an inequality.
Get Started on Chapter 3 148
3-1 Graphing Quadratic Functions 151
Extend 3-1 Graphing Technology Lab: Modeling Real-World Data 160
3-2 Solving Quadratic Equations by Graphing 163
Extend 3-2 Graphing Technology Lab: Solving Quadratic Equations by Graphing 171
3-3 Complex Numbers 172
3-4 Solving Quadratic Equations by Factoring 179
Extend 3-4 Algebra Lab: The Complex Plane 188
Mid-Chapter Quiz 190
3-5 Solving Quadratic Equations by Completing the Square 191
Extend 3-5 Graphing Technology Lab: Solving Quadratic Equations 198
3-6 The Quadratic Formula and the Discriminant 199
Extend 3-6 Algebra Lab: Quadratics and Rate of Change 208
3-7 Quadratic Inequalities 209
ASSESSMENT
Study Guide and Review 216
Practice Test 221
Performance Task 222
Preparing for Assessment, Test-Taking Strategy 223
Preparing for Assessment, Cumulative Review 224

Polynomials and Polynomial Functions

Get Started on Chapter 4 226
4-1 Operations with Polynomials 229
Extend 4-1 Algebra Lab: Dimensional Analysis 236
4-2 Powers of Binomials 237
4-3 Dividing Polynomials 242
Extend 4-3 Graphing Technology Lab: Dividing Polynomials 250
Explore 4-4 Graphing Technology: Power Functions 251
4-4 Graphing Polynomial Functions 253
4-5 Analyzing Graphs of Polynomial Functions 262
Extend 4-5 Graphing Technology Lab: Modeling
Data Using Polynomial Functions 270
Mid-Chapter Quiz 272
Explore 4-6 Graphing Technology Lab: Solving Polynomial Equations by Graphing 273
4-6 Solving Polynomial Equations 274
4-7 Proving Polynomial Identities 282
4-8 The Remainder and Factor Theorem 287
4-9 Roots and Zeros 293
Extend 4-9 Graphing Technology Lab: Analyzing Polynomial Functions 301
ASSESSMENT
Study Guide and Review 302
Practice Test 307
Performance Task 308
Preparing for Assessment, Test-Taking Strategy 309
Preparing for Assessment, Cumulative Review 310

Animations demonstrate Key Concepts and topics from the chapter. Click to watch animations in ConnectED.
connectED.mcgraw-hill.com
Get Started on Chapter 5 312
5-1 Operations with Functions 315
5-2 Composition of Functions 322
5-3 Inverse Functions and Relations 329
Extend 5-3 Graphing Technology Lab: Inverse Functions and Relations 336
Mid Chapter Quiz 337
5-4 Graphing Square Root Functions 338
5-5 Graphing Cube Root Functions 345
Extend 5-5 Graphing Technology Lab: Graphing nth Root Functions 351
5-6 Solving Radical Equations 352
Extend 5-6 Graphing Technology Lab: Solving Radical Equations 359
ASSESSMENT
Study Guide and Review 361
Practice Test 365
Performance Task 366
Preparing for Assessment, Test-Taking Strategy 367
Preparing for Assessment, Cumulative Review 368

A graphing calculator is a powerful tool for studying algebra. Graphing Calculator Keystrokes help you harness that power. Find the keystrokes for your calculator in the Resources in ConnectED.

Get Started on Chapter 6 370
6-1 Graphing Exponential Functions 373
Explore 6-2 Graphing Technology Lab: Solving Exponential Equations and Inequalities 380
6-2 Solving Exponential Equations and Inequalities 381
6-3 Geometric Sequences and Series 390
6-4 Logarithms and Logarithmic Functions 397
6-5 Modeling Data 405
Mid Chapter Quiz 415
6-6 Properties of Logarithms 416
6-7 Common Logarithms 423
6-8 Natural Logarithms 430
6-9 Solving Logarithmic Equations and Inequalities 437
Extend 6-9 Graphing Technology Lab: Solving Logarithmic Equations and Inequalities 443
6-10 Using Logarithms to Solve Exponential Problems 445
Extend 6-10 Graphing Technology Lab: Cooling 452
ASSESSMENT
Study Guide and Review 453
Practice Test 459
Performance Test 460
Preparing for Assessment, Test-Taking Strategy 461
Preparing for Assessment, Cumulative Review 462

Personal Tutors that use graphing
calculator technology show you every step to solving problems with this powerful tool. Find them in the Resources in ConnectED.

Go Onlinel

connectED.mcgraw-hill.com
Get Started on Chapter 7 464
7-1 Multiplying and Dividing Rational Expressions 467
7-2 Adding and Subtracting Rational Expressions 476
7-3 Graphing Reciprocal Functions 483
Mid Chapter Quiz 490
7-4 Graphing Rational Functions 491
Extend 7-4 Graphing Technology Lab: Graphing Rational Functions 499
7-5 Variation Functions 500
7-6 Solving Rational Equations and Inequalities 508
Extend 7-6 Graphing Technology Lab:
Solving Rational Equations and Inequalities 517
ASSESSMENT
Study Guide and Review 519
Practice Test 523
Performance Task 524
Preparing for Assessment, Test-Taking Strategy 525
Preparing for Assessment, Cumulative Review 526

Worksheets help to explain key concepts, let you practice your skills, and offer opportunities for extending the lessons. Find them in the Resources in ConnectED.

Get Started on Chapter 8 528
8-1 Random Sampling 531
8-2 Using Statistical Experiments _ 538
8-3 Population Parameters 545
8-4 Distributions of Data 551
Mid Chapter Quiz 560
8-5 Evaluating Published Data 561
8-6 Normal Distributions 566
8-7 Using Probability to Make Decisions _ 573
ASSESSMENT
Study Guide and Review _ 579
Practice Test 585
Performance Task 586
Preparing for Assessment, Test-Taking Strategy _ 587
Preparing for Assessment, Cumulative Review _ 588

The number cube and coin toss tools can be helpful as you study this chapter. Find them in the eToolkit in ConnectED.
Get Started on Chapter 9 590
Explore 9-1 Spreadsheet Lab: Investigating Special Right Triangles 593
9-1 Trigonometric Functions in Right Triangles 594
Extend 9-1 Geometry Lab: Regular Polygons 603
9-2 Angles and Angle Measure 604
Extend 9-2 Geometry Lab: Areas of Parallelograms 611
9-3 Trigonometric Functions of General Angles 612
Mid Chapter Quiz 619
9-4 Circular and Periodic Functions 620
9-5 Graphing Trigonometric Functions 627
Extend 9-5 Graphing Technology Lab: Trigonometric Graphs 634
9-6 Translations of Trigonometric Graphs 635
ASSESSMENT
Study Guide and Review 643
Practice Test 647
Performance Task 648
Preparing for Assessment, Test-Taking Strategy 649
Preparing for Assessment, Cumulative Review 650

Vocabulary is important to learning the Key Concepts in this chapter. Find all the terms with animations, English pronunciations, and translations to 13 languages in the eGlossary in ConnectED.

CHAPTER 10
 Trigonometric Identities and Equations

Get Started on Chapter 10 652
10-1 Trigonometric Identities 655
10-2 Verifying Trigonometric Identities 662
10-3 Sum and Difference Identities 668
Mid Chapter Quiz 674
10-4 Double-Angle and Half-Angle Identities 675
Explore 10-5 Graphing Technology Lab: Solving
Trigonometric Equations 682
10-5 Solving Trigonometric Equations 683
ASSESSMENT
Study Guide and Review 690
Practice Test 693
Performance Task 694
Preparing for Assessment, Test-Taking Strategy 695
Preparing for Assessment, Cumulative Review 696

```
Lessen 13-3
    \
    perition cectum1 t+peint (5,12)
```



```
    OD *- %
```


㓎

Use Self-Check Quizzes in ConnectED to check your understanding of trigonometric identities and equations.

Go Online!

connectED.mcgraw-hill.com

Student Handbook

Built-In Workbook

Extra Practice R1
Reference
Selected Answers and Solutions R11
Glossary/Glosario R97
Index R118
Formulas and Measures Inside Back Cover
Symbols and Properties Inside Back Cover

(10) Standards for Mathematical Practice

Glencoe Algebra 2 exhibits these practices throughout the entire program. All of the Standards for Mathematical Practice will be covered in each chapter. The MP icon notes specific areas of coverage.

Mathematical Practices	What does it mean?
1. Make sense of problems and persevere in solving them.	Solving a mathematical problem takes time. Use a logical process to make sense of problems, understand that there may be more than one way to solve a problem, and alter the process if needed.
2. Reason abstractly and quantitatively.	You can start with a concrete or real-world context and then represent it with abstract numbers or symbols (decontextualize), find a solution, then refer back to the context to check that the solution makes sense (contextualize).
3. Construct viable arguments and critique the reasoning of others.	Sound mathematical arguments require a logical progression of statements and reasons. Mathematically proficient students can clearly communicate their thoughts and defend them.
4. Model with mathematics.	Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. High school students at this level are expected to apply key takeaways from earlier grades to high-school level problems.
5. Use appropriate tools	
strategically.	Certain tools, including estimation and virtual tools are more appropriate than others. You should understand the benefits and limitations of each tool.
6. Attend to precision.	Precision in mathematics is more than accurate calculations. It is also the ability to communicate with the language of mathematics. In high school mathematics, precise language makes for effective communication and serves as a tool for understanding and solving problems.
7. Look for and make use of	
structure.	Mathematics is based on a well-defined structure. Mathematically proficient
students look for that structure to find easier ways to solve problems.	

by Dinah Zike

Folding Instructions

The following pages offer step-by-step instructions to make the Foldables ${ }^{\bullet}$ study guides.

Layered-Look Book

1. Collect three sheets of paper and layer them about 1 cm apart vertically. Keep the edges level.
2. Fold up the bottom edges of the paper to form 6 equal tabs.
3. Fold the papers and crease well to hold the tabs in place. Staple along the fold. Label each tab.

Shutter-Fold and Four-Door Books

1. Find the middle of a horizontal sheet of paper. Fold both edges to the middle and crease the folds. Stop here if making a shutter-fold book. For a four-door book, complete the steps below.

2. Fold the folded paper in half, from top to bottom.
3. Unfold and cut along the fold lines to make four tabs. Label each tab.

Concept-Map Book

1. Fold a horizontal sheet of paper from top to bottom.
 Make the top edge about 2 cm shorter than the bottom edge.
2. Fold width-wise into thirds.
3. Unfold and cut only the top layer along both folds to make three tabs. Label the top and each tab.

Vocabulary Book

1. Fold a vertical sheet of notebook paper in half.
2. Cut along every third line of only the top layer to form tabs. Label each tab.

Pocket Book

1. Fold the bottom of a horizontal sheet of paper up about 3 cm .
2. If making a two-pocket book, fold in half. If making a three-pocket book, fold in thirds.
3. Unfold once and dot with glue or staple to make pockets. Label each pocket.

Bound Book

1. Fold several sheets of paper in half to find the middle. Hold all but one sheet together and make a 3-cm cut at the fold line on each side of the paper.

2. On the final page, cut along the fold line to within $3-\mathrm{cm}$ of each edge.
3. Slip the first few sheets through the cut in the final sheet to make a multi-page book.

Top-Tab Book

1. Layer multiple sheets of paper so that about $2-3 \mathrm{~cm}$ of each can be seen.
2. Make a $2-3-\mathrm{cm}$ horizontal cut through all pages a short distance (3 cm) from the top edge of the top sheet.
3. Make a vertical cut up from the bottom to meet the horizontal cut.
4. Place the sheets on top of an uncut sheet and align the tops and sides of all sheets. Label each tab.

Accordion Book

1. Fold a sheet of paper in half. Fold in half and in half again to form eight sections.

2. Cut along the long fold line, stopping before you

reach the last two sections.
3. Refold the paper into an accordion book. You may want to glue the double pages together.

CHAPTER 5

Inverses and Radical Functions

THEN

You simplified polynomial expressions.

NOW

You will:

- Find compositions and inverses of functions.
- Graph and analyze square root functions and inequalities.
- Simplify and solve equations involving roots, radicals, and rational exponents.

(18) WHY

FINANCES Connecting finances to mathematics is a skill that, once mastered, you will use your entire life. Learning to manage your finances includes anticipating costs, such as college, and preparing for them.
Use the Mathematical Practices to complete the activity.

1. Using Tools Use the Internet to find the annual tuition for the college you plan to attend. Then, use the Internet to find the tuition costs over the last four years.
2. Applying Math Calculate the average annual rate of increase in tuition. Then, create a Line Graph that plots the tuition costs over the last four years and projects the tuition costs through the end of your four years in college.
onu suash

\square Go Online to Guide Your Learning

Explore \& Explain	Organize

Product Mat and Algebra Tiles

 Use the Product Mat and the Algebra Tiles to practice multiplying polynomials.

The Geometer's Sketchpad

 Use The Geometer's Sketchpad to perform operations with functions in Lesson 5-1 and Lesson 5-2, to illustrate inverses of relations and functions in Lesson 5-3, and to explore square root functions in Lesson 5-4.
eBook

Interactive Student Guide

Before starting the chapter, answer the Chapter Focus preview questions. Check your answers as you complete each lesson. At the end of the chapter, try the Performance Task.

Foldables

Get organized! Create an Inverses and Radical Functions Foldable before you
start the chapter to arrange your notes about radical equations and inequalities.

FOLDABLES

Collaborate

Chapter Project

In the Driving in Style project, you will use what you have learned about inverse functions to complete a project that addresses financial literacy.

Focus

LEARNSMART*

Need help studying? Complete the Modeling with Functions domain in LearnSmart to review for the chapter test.

ALEKS ${ }^{\circ}$

You can use the Radicals and Advanced Functions topic in ALEKS to explore what you know about relations and functions and what you are ready to learn.*

[^1]
Get Ready for the Chapter

Connecting Concepts
 Concept Check
 Review the concepts used in this chapter by answering the questions below.

1. In a graph such as the one shown, how do you define the "roots" of the graph?
2. If the exact roots of a graph cannot be found, what is typically stated?
3. What are the roots of the graph shown?

4. What type of division would you use to simplify $\left(5 x^{2}-22 x-15\right) \div(x-5) ?$
5. What property would you use to rewrite $-\frac{1}{2}(2 m-5)$ without parentheses?
6. Given $=3 x^{2}+3 x-5 x-5$, what property can you apply to begin to simplify the equation?
7. Given $=3 x(x+1)-5(x+1)$, what property can you apply to simplify the equation?
8. How would $-1\left(3 b^{2}+2 b-1\right)$ be written so that it does not contain parentheses?
9. Given $4 x^{2}+7 x+3$, what are the values for a, b, and c when applying the Quadratic Formula?
10. Given $\frac{3 m+5 n}{p}$, where $m=-5, n=2$, and $p=-1$, would you have a positive or negative number?

Performance Task Preview

You can use the concepts and skills in the chapter to perform various calculations on data collected in a university lab. Understanding inverses and radical functions will help you finish the Performance Task at the end of the chapter.

In this Performance Task you will:

- make sense of problems and persevere in solving them
- reason abstractly and quantitatively
- attend to precision

New Vocabulary

English	Español	
composition of functions	p. 322	composición de funciones
inverse relation	p. 329	relaciones inversas
inverse function	p. 329	función inversa
square root function	p. 338	función raíz cuadrada
radical function	p. 338	función radical
cube root function	p. 345	función ráiz cúbica
inflection point	p. 345	punto de inflexión
radical equation	p. 352	ecuación radical
extraneous solution	p. 352	solución extraña
radical inequality	p. 354	desigualdad radical

Review Vocabulary

absolute value valor absoluto a number's distance from zero on the number line, represented by $|x|$

rational number número racional any number $\frac{m}{n}$, where m and n are integers and n is not zero; the decimal form is either a terminating or repeating decimal.
relation relación a set of ordered pairs

LESSON 1

Operations with Functions

- You performed operations on polynomials.

New
Vocabulary
composition of functions

Mathematical Practices
4 Model with mathematics.
7 Look for and make use of structure.

- The graphs model the income for the Brooks family since 2005, where $m(x)$ represents Mr. Brooks' income and $f(x)$ represents Mrs. Brooks' income.

The total household income for the Brooks household can be represented by $f(x)+m(x)$.

Brooks Household Income

Perform Operations with Functions You have performed arithmetic operations with polynomials. You can also use addition, subtraction, multiplication, and division with functions.

You can perform arithmetic operations according to the following rules.

Key Concept Operations on Functions

Operation	Definition	Example Let $f(x)=2 x$ and $g(x)=-x+5$.
Addition	$(f+g)(x)=f(x)+g(x)$	$2 x+(-x+5)=x+5$
Subtraction	$(f-g)(x)=f(x)-g(x)$	$2 x-(-x+5)=3 x-5$
Multiplication	$(f \cdot g)(x)=f(x) \cdot g(x)$	$2 x(-x+5)=-2 x^{2}+10 x$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$	$\frac{2 x}{-x+5}, x \neq 5$

Example 1 Add and Subtract Functions

Given $f(x)=x^{2}-4$ and $g(x)=2 x+1$, find each function.
a. $(f+g)(x)$

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) & & \text { Addition of functions } \\
& =\left(x^{2}-4\right)+(2 x+1) & & f(x)=x^{2}-4 \text { and } g(x)=2 x+1 \\
& =x^{2}+2 x-3 & & \text { Simplify. }
\end{aligned}
$$

b. $(f-g)(x)$

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) & & \text { Subtraction of functions } \\
& =\left(x^{2}-4\right)-(2 x+1) & & f(x)=x^{2}-4 \text { and } g(x)=2 x+1 \\
& =x^{2}-2 x-5 & & \text { Simplify. }
\end{aligned}
$$

Guided Practice

Given $f(x)=x^{2}+5 x-2$ and $g(x)=3 x-2$, find each function.
1A. $(f+g)(x)$
1B. $(f-g)(x)$

Reading Math Tip

intersection Everyday usethe intersection of two roads is where the two roads meet; Math meaning-the intersection of two sets is the set of elements common to them.

You can graph sum and difference functions by graphing each function involved separately, then adding their corresponding functional values. Let $f(x)=x^{2}$ and $g(x)=x$. Examine the graphs of $f(x), g(x)$, and their sum and difference.

Find $(f+g)(x)$.

x	$f(x)=x^{2}$	$g(x)=x$	$(f+g)(x)=x^{2}+x$
-3	9	-3	$9+(-3)=6$
-2	4	-2	$4+(-2)=2$
-1	1	-1	$1+(-1)=0$
0	0	0	$0+0=0$
1	1	1	$1+1=2$
2	4	2	$4+2=6$
3	9	3	$9+3=12$

Find $(f-g)(x)$.

x	$f(x)=x^{2}$	$g(x)=x$	$(f-g)(x)=x^{2}-x$
-3	9	-3	$9-(-3)=12$
-2	4	-2	$4-(-2)=6$
-1	1	-1	$1-(-1)=2$
0	0	0	$0-0=0$
1	1	1	$1-1=0$
2	4	2	$4-2=2$
3	9	3	$9-3=6$

In Example 1, the functions $f(x)$ and $g(x)$ have the same domain of all real numbers. The functions $(f+g)(x)$ and $(f-g)(x)$ also have domains that include all real numbers. For each new function, the domain consists of the intersection of the domains of $f(x)$ and $g(x)$. Under division, the domain of the new function is restricted by excluded values that cause the denominator to equal zero.

Example 2 Multiply and Divide Functions

Given $f(x)=x^{2}+7 x+12$ and $g(x)=3 x-4$, find each function. Indicate any restrictions in the domain.
a. $(f \cdot g)(x)$

$$
\begin{aligned}
(f \cdot g)(x) & =f(x) \cdot g(x) & & \text { Multiplication of functions } \\
& =\left(x^{2}+7 x+12\right)(3 x-4) & & \text { Substitution } \\
& =3 x^{3}+21 x^{2}+36 x-4 x^{2}-28 x-48 & & \text { Distributive Property } \\
& =3 x^{3}+17 x^{2}+8 x-48 & & \text { Simplify. }
\end{aligned}
$$

b. $\left(\frac{f}{g}\right)(x)$

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { Division of fu } \\
& =\frac{x^{2}+7 x+12}{3 x-4}, x \neq \frac{4}{3} & & \text { Substitution }
\end{aligned}
$$

Because $x=\frac{4}{3}$ makes the denominator $3 x-4=0, \frac{4}{3}$ is excluded from the domain of $\left(\frac{f}{g}\right)(x)$.

Guided Practice Given $f(x)=x^{2}-7 x+2$ and $g(x)=x+4$, find each function.
2A. $(f \cdot g)(x)$
2B. $\left(\frac{f}{g}\right)(x)$

Real-World Link

In a robotics competition, teams compete to build robots that can accomplish a given task. In 2016, about 29,000 students from 40 countries participated in a robotics competition in St. Louis.

Source: U.S. News \& World Report

Watch Out!

Evaluating the Function Remember that x is the total number of team members, so evaluate the function for $x=15$, not $x=13$.

Apply Operations with Functions In many real-world modeling situations you write multiple functions that each represent one aspect of the problem. You can combine the functions to build a new function that models a different aspect of the problem.

Real-World Example 3 Build a New Function

ROBOTICS A robotics competition team is preparing for a tournament. The team's captain is ordering custom T-shirts for each of the members. The T-shirts cost $\$ 8$ each, plus a one-time set-up fee of $\$ 25$. Sales tax on the order is 8%. The team decides that the members will split the cost of the T-shirts equally, and that the team's captain and vice-captain will not have to pay for their shirts.
a. Write a function $C(x)$ that represents the total cost of the T-shirts, where x is the number of team members.
$8 x+25$ represents the cost of T-shirts before sales tax. Multiply by 1.08 to find the total cost after the 8% sales tax is applied.

$$
\begin{aligned}
C(x) & =(1.08)(8 x+25) & & \text { Multiply } 8 \mathrm{x}+25 \text { by } 1.08 . \\
& =(1.08)(8 x)+(1.08)(25) & & \text { Distributive Property } \\
& =8.64 x+27 & & \text { Simplify. }
\end{aligned}
$$

So, $C(x)=8.64 x+27$ represents the total cost of the T-shirts for x team members.
b. Write a function $N(x)$ to represent the number of team members who pay for the T-shirts.
All of the team members except the captain and vice-captain pay for T-shirts.
So, $N(x)=x-2$.
c. Find $\left(\frac{C}{N}\right)(x)$ and explain what this function represents.

$$
\begin{aligned}
\left(\frac{C}{N}\right)(x) & =\frac{C(x)}{N(x)} & & \text { Division of functions } \\
& =\frac{8.64 x+27}{x-2} & & \text { Substitution }
\end{aligned}
$$

So, $\left(\frac{C}{N}\right)(x)=\frac{8.64 x+27}{x-2}, x \neq 2$. This function represents the dollar amount that each paying team member will contribute to the cost of the T-shirts.
d. If the team has 15 members, how much does each paying team member contribute to the cost of the T-shirts?

$$
\begin{aligned}
\left(\frac{C}{N}\right)(15) & =\frac{8.64(15)+27}{15-2} & & \text { Evaluate the function for } x=15 . \\
& \approx 12.05 & & \text { Simplify. }
\end{aligned}
$$

Each paying member of the team contributes $\$ 12.05$.

Guided Practice

3. CHEMISTRY A chemist has 500 grams of a 15% saline solution. She adds x grams of salt to the solution. Write a function $S(x)$ that represents the number of grams of salt in the new solution, a function $T(x)$ that represents the total number of grams of the new solution, and then find $\left(\frac{S}{T}\right)(x)$ and explain what this function represents.

Examples 1-2 $\begin{aligned} & \text { Find }(f+g)(x),(f-g)(x),(f \cdot g)(x) \text {, and }\left(\frac{f}{g}\right)(x) \text { for each } f(x) \text { and } g(x) \text {. Indicate any } \\ & \text { restrictions in the domain. }\end{aligned}$

1. $f(x)=x+2$
2. $f(x)=x^{2}-5$
$g(x)=3 x-1$
$g(x)=-x+8$

Example 3

3. PHOTOGRAPHY A group of photographers is planning an exhibit of their work. Each photographer will contribute 5 prints to the exhibit and the cost of framing each print is $\$ 7.85$. There is also a flat fee of $\$ 200$ to rent the room for the exhibit. The photographers plan to split the cost of the exhibit equally.
a. Write a function $C(x)$ that represents the total cost of the exhibit, where x is the number of photographers.
b. In addition to the photographers, 3 family members offer to participate in sharing the cost of the exhibit. Write a function $P(x)$ to represent the number of people who pay for the exhibit.
c. Find $\left(\frac{C}{P}\right)(x)$ and explain what this function represents.
d. If there are 8 photographers, how much does each photographer contribute to the cost of the exhibit?

Practice and Problem Solving

Examples 1-2 Find $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ for each $f(x)$ and $g(x)$. Indicate any
4. $f(x)=2 x$
$g(x)=-4 x+5$
6. $f(x)=x^{2}$
$g(x)=-x+1$
8. $f(x)=x-2$
$g(x)=2 x-7$
10. $f(x)=-x^{2}+6$
$g(x)=2 x^{2}+3 x-5$
5. $f(x)=x-1$

$$
g(x)=5 x-2
$$

(7) $f(x)=3 x$
$g(x)=-2 x+6$
9. $f(x)=x^{2}$
$g(x)=x-5$
11. $f(x)=3 x^{2}-4$
$g(x)=x^{2}-8 x+4$
12. BASKETBALL During a practice session, Dimitri makes 20 free-throw attempts and makes 60% of the free throws. Then, on his next attempt, he begins a streak in which he makes x free throws in a row.
a. What do the functions $f(x)=12+x$ and $g(x)=20+x$ represent?
b. Find $\left(\frac{f}{g}\right)(x)$ and explain what this function represents.
b. Find $\left(\frac{f}{g}\right)$ (7) and explain what this value represents.
13. POPULATION In a particular county, the population of the two largest cities can be modeled by $f(x)=200 x+25$ and $g(x)=175 x-15$, where x is the number of years since 2010 and the population is in thousands.
a. What is the population of the two cities combined after any number of years?
b. What is the difference in the populations of the two cities?

Perform each operation if $f(x)=x^{2}+x-12$ and $g(x)=x-3$. State the domain of the resulting function.
14. $(f-g)(x)$
15. $2(g \cdot f)(x)$
16. $\left(\frac{f}{g}\right)(x)$
17. MULTIPLE REPRESENTATIONS Let $f(x)=x^{2}$ and $g(x)=x$.
a. Tabular Make a table showing values for $f(x), g(x),(f+g)(x)$, and $(f-g)(x)$.
b. Graphical Graph $f(x), g(x)$, and $(f+g)(x)$ on the same coordinate grid.
c. Graphical Graph $f(x), g(x)$, and $(f-g)(x)$ on the same coordinate grid.
d. Verbal Describe the relationship among the graphs of $f(x), g(x),(f+g)(x)$, and $(f-g)(x)$.

Use the table to find each value.
18. $(f+g)(-5)$
19. $(g-f)(-1)$
20. $(f \cdot g)(3)$
21. $(h \cdot f)(0)$
22. $\left(\frac{f}{g}\right)(-1)$
23. $\left(\frac{h}{g}\right)(0)$
24. $\left(\frac{g}{f}\right)(4)$
25. $\left(\frac{g}{h}\right)(-5)$

x	$f(x)$	$g(x)$	$h(x)$
-5	-8	8	2
-2	4	5	-10
-1	-2	-4	0
0	3	-5	-5
3	2	0	8
4	0	-1	7

Use the graph of $f(x)$ and $g(x)$ to find each value.
26. $(f-g)(1)$

(27) $(f \cdot g)(0)$

29. $\left(\frac{f}{g}\right)(-2)$

If $f(x)=-x+1, g(x)=4 x+2$, and $h(x)=x^{2}-1$, find each value.
30. $(2 f+g)(1)$
31. $(3 f+2 h)(0)$
32. $(-f+2 g)(3)$
33. $(5 f \cdot h)(-1)$
34. $\left(\frac{3 f}{g}\right)(2)$
35. $\left(\frac{g}{2 h}\right)(0)$
36. $(h-2 f)(5)$
37. $(-f-h)(1)$
38. $(5 h-0.1 g)(2)$

EMPLOYMENT The number of women and men age 16 and over employed each year in the United States can be modeled by the following equations, where x is the number of years since 2000 and y is the number of people in thousands.
women: $y=548.6 x+66,527$

$$
\text { men: } y=2090.7 x+62,243
$$

a. Write a function that models the total number of men and women employed in the United States during this time.
b. If f is the function for the number of men, and g is the function for the number of women, what does $(f-g)(x)$ represent?

If $f(x)=x+2, g(x)=-4 x+3$, and $h(x)=x^{2}-2 x+1$, find each value.
40. $(f \cdot g \cdot h)(3)$
41. $[(f+g) \cdot h](1)$
42. $\left(\frac{h}{f g}\right)(-6)$
43. MULTIPLE REPRESENTATIONS You will explore $(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$, if $f(x)=x^{2}+1$
and $g(x)=x-3$. and $g(x)=x-3$.
a. Tabular Make a table showing values for $(f \cdot g)(x)$ and $\left(\frac{f}{g}\right)(x)$.
b. Graphical Use a graphing calculator to graph $(f \cdot g)(x)$ and $\left(\frac{f}{g}\right)(x)$ on the same coordinate plane.
c. Verbal Explain the relationship between $(f \cdot g)(x)$ and $\left(\frac{f}{g}\right)(x)$.
44. MULTI-STEP Ice cream cones are one of many treats sold at Sam's Desserts. They sell 60 scoops for every gallon of ice cream. They pay $\$ 6$ per gallon of ice cream, $\$ 2$ for every box of 24 cones, and allocate a fixed monthly cost of $\$ 400$ to ice cream. Their sales reports for the past 6 months are shown.

Month	January	February	March	April	May	June
Price	$\$ 3.50$	$\$ 3.70$	$\$ 3.90$	$\$ 3.75$	$\$ 3.55$	$\$ 3.80$
Scoops Sold	224	208	188	205	219	199

a. What is their maximum monthly profit from ice cream sales?
b. Describe your solution process.

H.O.T. Problems Use Higher-Order Thinking Skills

45. OPEN-ENDED Write two functions $f(x)$ and $g(x)$ such that $(f \cdot g)(x)=2 x^{2}-2$.
46. CHALLENGE Given that $(f+g)(4)=8$ and $(f-g)(4)=-6$, find $f(4)$ and $g(4)$.
47. REASONING State whether each statement is sometimes, always, or never true. Explain.
a. If $f(x)$ and $g(x)$ are linear functions, then there is one value that is excluded from the domain of $(f+g)(x)$.
b. If $f(x)$ and $g(x)$ are linear functions, then there is one value that is excluded from the domain of $\left(\frac{f}{g}\right)(x)$.
48. (11) STRUCTURE Suppose $f(x)=a x^{2}+b x+c$ and $g(x)=m x^{2}+n x+p$, for constants a, b, c, m, n, and p, with $a \neq 0$ and $m \neq 0$. What can you conclude about the constants if the domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers? Explain.
49. WRITING IN MATH If $f(x)$ and $g(x)$ are polynomials, what can you say about the domains of $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$?

Preparing for Assessment

50. Let $f(x)=x^{2}-4$ and $g(x)=x^{2}-1$. What is the domain of the function $\left(\frac{f}{g}\right)(x)$? (1)7 7
A all real numbersB all real numbers except $x=0$
C all real numbers except $x= \pm 1$
\bigcirc D all real numbers except $x= \pm 2$
51. Let $f(m)=p$ where m and p are both nonzero integers. Which statement(s) must be true? (10) 7

$$
\text { I. } f\left(\frac{m}{2}\right)=\frac{p}{2}
$$

II. $2 f(m)=2 p$
III. $f(2 m)=2 p$

A I only
○ B II only
O C III only
O D I and II only
52. The graphs of $f(x)$ and $g(x)$ are shown. (1) 7

What is $\left(\frac{f}{g}\right)(-2)$?A -2
В $-\frac{1}{2}$

C $\frac{1}{2}$
○ 2
53. If $f(x)=2 x-10$ and $g(x)=x^{2}+3 x+1$, what is $(f \cdot g)(3)$? 6

$$
(f \cdot g)(3)=\square
$$

54. Find $(f+g)(x)$ for the following functions. 1,6
$f(x)=-5 x^{2}+4 x-7$
$g(x)=6 x^{2}-4 x+12$
55. Find $(f \cdot g)(-2)$ for the following functions. 1,6
$f(x)=-x^{2}+2 x-2$
$g(x)=2 x+3$A -20120
○ $\quad 8$
D
215
56. For which pair(s) of functions is the domain of $\left(\frac{f}{g}\right)(x)$ all real numbers?
$\square \mathbf{A} \quad f(x)=x$ and $g(x)=x^{2}+4$
\square B $f(x)=x$ and $g(x)=x^{2}-4$
\square C $f(x)=x^{2}-4$ and $g(x)=4$
\square D $f(x)=x+4$ and $g(x)=x-4$
$\square \mathrm{E} \quad f(x)=4$ and $g(x)=x^{2}+4$
$\square \mathbf{F} \quad f(x)=x^{2}+4$ and $g(x)=x^{2}-4$
57. If $f(-2)=a$ and $(f \cdot g)(-2)=2 a^{2}$, which of the following is $g(-2)$? (1) 2
OA $2 a$B $-4 a^{2}$
\bigcirc C $-2 a$
\bigcirc D $2 a^{3}$
58. MULTI-STEP Jordan is ordering books online for the members of his book club. Each member of the club will receive a copy of the book and each book costs $\$ 8.95$. Because Jordan is ordering a large quantity of books, one of them is free. The shipping fee for the order is a flat rate of $\$ 4.50$ and there is no sales tax. 101, 1
a. Let x represent the number of members of the club. Write a function $B(x)$ that represents the total cost of the books.
b. The club members decide to split the cost evenly and they decide that Jordan should not have to pay anything since he placed the order. Write a function $N(x)$ that represents the number of club members who pay for books.
c. Find $\left(\frac{B}{N}\right)(x)$ and explain what it represents.
d. The book club has 12 members. How much does each member pay?

Composition of Functions

:'Then

- You performed arithmetic operations on functions.

Perform compositions of functions.

Submersibles can descend several miles below the surface of the ocean. You can write a function $d(t)$ that gives the depth of the submersible after t minutes and a function $p(d)$ that gives the pressure at depth d. The composition of the functions $p[d(t)]$ gives the pressure on the submersible after t minutes.

New
Vocabulary
composition of functions

Mathematical Practices
4 Model with
mathematics.
7 Look for and make use of structure.

Go Online!

The composition of f and g, denoted by $f \circ g$ or $f[g(x)]$, is read f of g. To hear more pronunciations of expressions, log into your eStudent Edition. Ask your teacher or a partner for clarification as you need it.

Perform Compositions of Functions You have already combined functions with arithmetic operations. Another method used to combine functions is a composition of functions. In a composition of functions, the results of one function are used to evaluate a second function.

Key Concept Composition of Functions

Words Suppose f and g are functions such that the range of g is a subset of the domain of f. Then the composition function $f \circ g$ can be described by

$$
[f \circ g](x)=f[g(x)]
$$

Example 1 Evaluate Compositions of Functions

Given $f(x)=x^{2}-4$ and $g(x)=2 x+1$, find each value.
a. $[f \circ g](3)$

$$
\begin{aligned}
{[f \circ g](3) } & =f[g(3)] & & \text { Composition of functions } \\
& =f(7) & & g(3)=2(3)+1=7 \\
& =45 & & f(7)=7^{2}-4=45
\end{aligned}
$$

So, $[f \circ g](3)=45$.
b. $[g \circ f](3)$

$$
\begin{aligned}
& {[g \circ f](3)=g[f(3)] \quad \text { Composition of functions }} \\
& =g(5) \quad f(3)=3^{2}-4=5 \\
& =11 \\
& g(5)=2(5)+1=11 \\
& \text { So, }[g \circ f](3)=11 \text {. }
\end{aligned}
$$

Guided Practice

Given $f(x)=3 x-6$ and $g(x)=x^{3}+1$, find each value.
1A. $[f \circ g](5)$
1B. $[g \circ f](5)$

The composition of two functions may not exist. Given two functions f and g, $[f \circ g](x)$ is defined only if the range of $g(x)$ is a subset of the domain of f. Likewise, [$g \circ f](x)$ is defined only if the range of $f(x)$ is a subset of the domain of g.

Study Tip

Composition Be careful not to confuse a composition $f[g(x)]$ with multiplication of functions $(f \cdot g)(x)$.

Example 2 Perform Compositions of Functions

For each pair of functions, find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.
a. $f=\{(1,8),(0,13),(15,11),(14,9)\}, g=\{(8,15),(5,1),(10,14),(9,0)\}$

To find $f \circ g$, evaluate $g(x)$ first. Then use the range to evaluate $f(x)$.

$$
\begin{aligned}
& f[g(8)]=f(15) \text { or } 11 \quad g(8)=15 \\
& f[g(5)]=f(1) \text { or } 8 \quad g(5)=1 \\
& f[g(10)]=f(14) \text { or } 9 \quad g(10)=14 \\
& f[g(9)]=f(0) \text { or } 13 \quad g(9)=0 \\
& f \circ g=\{(8,11),(5,8),(10,9),(9,13)\} \\
& D=\{5,8,9,10\}, R=\{8,9,11,13\}
\end{aligned}
$$

To find $g \circ f$, evaluate $f(x)$ first. Then use the range to evaluate $g(x)$.

$$
\begin{array}{ll}
g[f(1)]=g(8) \text { or } 15 & f(1)=8 \\
g[f(0)]=g(13) & g(13) \text { is undefined. } \\
g[f(15)]=g(11) & g(11) \text { is undefined. } \\
g[f(14)]=g(9) \text { or } 0 & f(14)=0
\end{array}
$$

Because 11 and 13 are not in the domain of $g, g \circ f$ is undefined for $x=0$ and $x=15$. However, $g[f(1)]=15$ and $g[f(14)]=0$.

So, $g \circ f=\{(1,15),(14,0)\}$.
$D=\{1,14\}, R=\{0,15\}$
b. $f(x)=2 x-5, g(x)=4 x$

$$
\begin{aligned}
& {[f \circ g](x)=f[g(x)] \quad \text { Composition of functions }} \\
& =f(4 x) \quad \text { Substitute } \\
& =2(4 x)-5 \quad \text { Substitute again. } \\
& =8 x-5 \\
& \text { Simplify. } \\
& {[g \circ f](x)=g[f(x)]} \\
& =g(2 x-5) \\
& =4(2 x-5) \\
& =8 x-20
\end{aligned}
$$

So, $[f \circ g](x)=8 x-5$ and $[g \circ f](x)=8 x-20$.
For $[f \circ g](x), \mathrm{D}=\{$ all real numbers $\}$ and $\mathrm{R}=\{$ all real numbers $\}$, and for $[g \circ f](x)$, $D=\{$ all real numbers $\}$ and $R=$ all real numbers $\}$.

Guided Practice

2A. $f(x)=\{(3,-2),(-1,-5),(4,7),(10,8)\}, g(x)=\{(4,3),(2,-1),(9,4),(3,10)\}$
2B. $f(x)=x^{2}+2$ and $g(x)=x-6$

Notice that in most cases, $f \circ g \neq g \circ f$. Therefore, the order in which two functions are composed is important.

Real-World Career
Adjusted for inflation, the average price of a new car increased from \$22,013 in 2005 to about \$30,000 in 2013.

Source: Federal Trade Commission Consumer Information

2
Apply Compositions of Functions In some real-world situations, functions are applied in sequence, one after the other. In such cases, you can write a model for the situation using a composition of functions.

Real-World Example 3 Apply Compositions of Functions

SHOPPING A new car dealer is discounting all new cars by 12%. At the same time, the manufacturer is offering a $\$ 1500$ rebate on all new cars. Mr. Navarro is buying a car that is priced $\$ 24,500$. Will the final price be lower if the discount is applied before the rebate or if the rebate is applied before the discount?

Understand Let x represent the original price of a new car, $d(x)$ represent the price of a car after the discount, and $r(x)$ the price of the car after the rebate.

Plan Write equations for $d(x)$ and $r(x)$.
The original price is discounted by $12 \% . \quad d(x)=x-0.12 x$
There is a $\$ 1500$ rebate on all new cars.
$r(x)=x-1500$
Solve If the discount is applied before the rebate, then the final price of Mr. Navarro's new car is represented by $[r \circ d](24,500)$.

$$
\begin{aligned}
& {[r \circ d](x)=r[d(x)] } \\
& {[r \circ d](24,500) }=r[24,500-0.12(24,500)] \\
&=r(24,500-2940) \\
&=r(21,560) \\
&=21,560-1500 \\
&=20,060
\end{aligned}
$$

If the rebate is given before the discount is applied, then the final price of Mr. Navarro's car is represented by $[d \circ r](24,500)$.

$$
\begin{aligned}
& {[d \circ r](x)=d[r(x)]} \\
& \begin{aligned}
{[d \circ r](24,500) } & =d(24,500-1500) \\
& =d(23,000) \\
& =23,000-0.12(23,000) \\
& =23,000-2760 \\
& =20,240
\end{aligned}
\end{aligned}
$$

$[r \circ d](24,500)=20,060$ and $[d \circ r](24,500)=20,240$. So, the final price of the car is less when the discount is applied before the rebate.
Check Graph $[d \circ r](x)$ and $[r \circ d](x)$. The final price of the car is less for $[r \circ d](x)$.
The answer seems reasonable because the 12% discount is being applied to a greater amount. Thus, the dollar amount of the discount is greater.

Guided Practice

Initial Price
3. SHOPPING Gadgets-to-Go offers both an in-store \$35 rebate and a 15% discount on a tablet that normally sells for $\$ 300$. Which provides the better price: taking the discount before the rebate or taking the discount after the rebate?

Example $1 \quad$ Given $f(x)=x^{2}+3$ and $g(x)=2 x-10$, find each value.

1. $[f \circ g](4)$
2. $[g \circ f](4)$
3. $[f \circ g](0)$
4. $[g \circ f](0)$
5. $[f \circ g](-1)$
6. $[g \circ f](-1)$
7. $[f \circ g](5)$
8. $[f \circ g](-4)$
9. $[g \circ f](2)$

Example 2 For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain and range for each composed function.
10. $f=\{(2,5),(6,10),(12,9),(7,6)\}$
$g=\{(9,11),(6,15),(10,13),(5,8)\}$
11. $f=\{(-5,4),(14,8),(12,1),(0,-3)\}$
$g=\{(-2,-4),(-3,2),(-1,4),(5,-6)\}$

Find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.
12. $f(x)=-3 x$
13. $f(x)=x+4$
$g(x)=5 x-6$
$g(x)=x^{2}+3 x-10$

Example 3
14. MODELING Dora has 8% of her earnings deducted from her paycheck for a college savings plan. She can choose to take the deduction either before taxes are withheld, which reduces her taxable income, or after taxes are withheld. Dora's tax rate is 17.5%. If her pay before taxes and deductions is $\$ 950$, will she save more money if the deductions are taken before or after taxes are withheld? Explain.

Practice and Problem Solving

Example 1 Given $f(x)=x+4, g(x)=-2 x^{2}$, and $h(x)=5$, find each value.
(15) $[f \circ g](10)$
16. $[g \circ f](10)$
17. $[f \circ h](0)$
18. $[h \circ f](3)$
19. $[g \circ h](-2)$
20. $[h \circ g](-2)$
21. $[f \circ g](-4)$
22. $[g \circ f](-4)$
23. $[g \circ f](-12)$

Example 2 For each pair of functions, find $f \circ g$ and $g \circ f$, if they exist. State the domain and range for each composed function.
24. $f=\{(-8,-4),(0,4),(2,6),(-6,-2)\}$
$g=\{(4,-4),(-2,-1),(-4,0),(6,-5)\}$
25. $f=\{(-7,0),(4,5),(8,12),(-3,6)\}$ $g=\{(6,8),(-12,-5),(0,5),(5,1)\}$
26. $f=\{(5,13),(-4,-2),(-8,-11),(3,1)\}$
$g=\{(-8,2),(-4,1),(3,-3),(5,7)\}$
27. $f=\{(-4,-14),(0,-6),(-6,-18),(2,-2)\}$
$g=\{(-6,1),(-18,13),(-14,9),(-2,-3)\}$
28. $f=\{(-15,-5),(-4,12),(1,7),(3,9)\}$
$g=\{(3,-9),(7,2),(8,-6),(12,0)\}$
29. $f=\{(-1,11),(2,-2),(5,-7),(4,-4)\}$
$g=\{(5,-4),(4,-3),(-1,2),(2,3)\}$
30. $f=\{(7,-3),(-10,-3),(-7,-8),(-3,6)\}$ $g=\{(4,-3),(3,-7),(9,8),(-4,-4)\}$
31. $f=\{(1,-1),(2,-2),(3,-3),(4,-4)\}$
$g=\{(1,-4),(2,-3),(3,-2),(4,-1)\}$
32. $f=\{(-4,-1),(-2,6),(-1,10),(4,11)\}$
$g=\{(-1,5),(3,-4),(6,4),(10,8)\}$
33. $f=\{(12,-3),(9,-2),(8,-1),(6,3)\}$
$g=\{(-1,5),(-2,6),(-3,-1),(-4,8)\}$

Find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function.
34. $f(x)=2 x$
$g(x)=x+5$
37. $f(x)=x-4$
$g(x)=x^{2}-10$
(35) $f(x)=-3 x$
$g(x)=-x+8$
36. $f(x)=x+5$
$g(x)=3 x-7$
38. $f(x)=x^{2}+6 x-2$
$g(x)=x-6$
39. $f(x)=2 x^{2}-x+1$
$g(x)=4 x+3$
40. $f(x)=4 x-1$
$g(x)=x^{3}+2$
41. $f(x)=x^{2}+3 x+1$
$g(x)=x^{2}$
42. $f(x)=2 x^{2}$
$g(x)=8 x^{2}+3 x$
43. (10) SENSE-MAKING Ms. Smith wants to buy a home theater system, which is on sale for 35% off the original price of $\$ 2299$. The sales tax is 6.25%.
a. Write two functions representing the price after the discount $p(x)$ and the price after sales tax $t(x)$.
b. Which composition of functions represents the price of the home theater system, $[p \circ t](x)$ or $[t \circ p](x)$? Explain your reasoning.
c. How much will Ms. Smith pay for the home theater system?

If $f(x)=5 x, g(x)=-2 x+1$, and $h(x)=x^{2}+6 x+8$, find each value.
44. $f[g(3 a)]$
45. $f[h(a+4)]$
46. $g\left[f\left(a^{2}-a\right)\right]$

Use the table to find each value.
47. $[f \circ g](-2)$
48. $[g \circ f](-2)$
49. $[f \circ g](-1)$
50. $[g \circ f](1)$
51. $[h \circ g](2)$
52. $[g \circ h](2)$
53. $[f \circ h](0)$
54. $[f \circ g](-1)$

x	$f(x)$	$g(x)$	$h(x)$
-2	-2	1	0
-1	-4	1	0
0	-2	-2	-2
1	2	-1	-2
2	-1	0	5

Use the graph of $f(x)$ and $g(x)$ to find each value.
55. $[g \circ f](1)$

57. $[f \circ g](2)$

56. $[f \circ g](-2)$

58. $[g \circ f](1)$

If $f(x)=x+2, g(x)=-4 x+3$, and $h(x)=x^{2}-2 x+1$, find each value.
$59[f \circ(g \circ h)](2)$
60. $[g \circ(h \circ f)](-4)$
61. $[h \circ(f \circ g)](5)$
62. MULTIPLE REPRESENTATIONS You will explore $[f \circ g](x)$ and $[g \circ f](x)$ if $f(x)=x^{2}+1$ and $g(x)=x-3$.
a. Tabular Make a table showing values for practices $[f \circ g](x)$ and $[g \circ f](x)$.
b. Graphical Use a graphing calculator to graph $[f \circ g](x)$, and $[g \circ f](x)$ on the same coordinate plane.
c. Verbal Explain the relationship between $[f \circ g](x)$, and $[g \circ f](x)$.
63. (ili REASONING Copy and complete the table. Use the following clues and logical reasoning to help you.

- $f(x)$ and $g(x)$ are linear functions.
- $[f \circ g](2)=6$
- $[g \circ f](3)=10$

x	$f(x)$	$g(x)$
1		
2		
3		
4	6	10
5		

Given that $f(x)=m x+d$ and $g(x)=a x^{2}+b x+c$, find each composition.
64. $(f \circ g)(x)$
65. $(g \circ f)(x)$
66. $(f \circ f)(x)$
67. Suppose $f(x)=x^{p}$ and $g(x)=x^{q}$, where p and q are positive integers. What can you say about the power of $(f \circ g)(x)$ and $(g \circ f)(x)$? Explain.

H.O.T. Problems Use Higher-Order Thinking Skills

68. OPEN-ENDED Write two functions $f(x)$ and $g(x)$ such that $(f \circ g)(4)=0$.
69. ERROR ANALYSIS Denise and Keiko were asked to find $[f \circ g](x)$ given that $f(x)=6 x+5$ and $g(x)=2 x-1$. Is either of them correct? Explain your reasoning. If neither student is correct, provide the correct answer.

	\quad Denise
$[f \circ g](x)$	$=(6 x+5)(2 x-1)$
	$=(6 x)(2 x)+6 x(-1)+5(2 x)+5(-1)$
	$=12 x^{2}-6 x+10 x-5$
	$=12 x^{2}+4 x-5$

Keiko	
$[f \circ g](x)$	$=f[g(x)]$
	$=f(2 x-1)$
	$=6(2 x-1)+5$
	$=12 x-1+5$
	$=12 x+4$

70. CHALLENGE Given that $f(x)=3 x+4$, find $[f \circ f \circ f](2)$.
71. (MB) REASONING State whether each statement is sometimes, always, or never true. Explain.
a. The domain of two functions $f(x)$ and $g(x)$ that are composed $g[f(x)]$ is restricted by the domain of $f(x)$.
b. The domain of two functions $f(x)$ and $g(x)$ that are composed $g[f(x)]$ is restricted by the domain of $g(x)$.
72. © WRITING IN MATH In the real world, why would you ever perform a composition of functions?

Preparing for Assessment

73. What is the value of $f[g(5)]$ if $f(x)=\frac{x+2}{2}$ and $g(x)=x^{2}-2$? (in) 1A $3 \frac{1}{2}$
B $10 \frac{1}{4}$
C $12 \frac{1}{2}$
OD 23
74. Let $f(x)=x^{2}+1$. What is the value of $f(f(3))$?
\bigcirc A 2
B 10
\bigcirc C 82
\bigcirc D 101
75. For which pair (s) of functions is $[f \circ g](x)$ a quadratic function? (ili) 7
A $f(x)=x^{2}$ and $g(x)=3 x+7$
B $f(x)=x-4$ and $g(x)=x^{2}-1$C $f(x)=x+9$ and $g(x)=2 x-3$D $f(x)=x$ and $g(x)=6 x$E $f(x)=x^{2}-1$ and $g(x)=x^{2}+1$
$\square \mathbf{F} f(x)=x^{2}-4$ and $g(x)=3 x$
76. If $f(x)=2 x+1$ and $g(x)=4 x-5$, which of the following is $[f \circ g](x)$? (1) 1A $[f \circ g](x)=8 x-9$B $[f \circ g](x)=8 x-4$
C $[f \circ g](x)=8 x-1$
$\bigcirc \mathbf{D}[f \circ g](x)=8 x-10$
77. Find $(f \circ g)(4)$ for the following functions.

$$
\begin{aligned}
& f(x)=2 x+5 \\
& g(x)=x^{2}-2 x+3
\end{aligned}
$$

78. Find $(g \circ f)(-2)$ for the following functions. (1) 1,6
$f(x)=-x^{2}+6 x-1$
$g(x)=2 x^{2}-3 x$
\bigcirc A - 113C 629
\bigcirc B 476 ○D 1084
79. The graphs of $f(x)$ and $g(x)$ are shown.

What is $[f \circ g](2)$? (1.07 7
○ $\begin{array}{ll}\mathbf{A} & -8\end{array}$
○ $\quad-3$
$\bigcirc \mathrm{C} \quad 2$D 4
80. If $f(x)=x^{2}-8$ and $g(x)=3 x+1$, what is the value of $[g \circ f](-4)$? 6
$[g \circ f](-4)=\square$
81. MULTI-STEP Amelia is shopping at an online store. Shipping for each order costs a flat fee of $\$ 6.75$. Sales tax is 8%. (10) 1,4
a. Let x represent the cost of an order before shipping or sales tax. Write a function $s(x)$ that represents the cost of an order with shipping, and a function $t(x)$ that represents the cost of an order with sales tax.
b. Find $[s \circ t](x)$ and explain what this function represents.
c. Find $[t \circ s](x)$ and explain what this function represents.
d. Will Amelia get a better deal if the shipping fee is applied to the order before sales tax, or after sales tax? Explain.

Inverse Functions and Relations

:"Then

- You transformed and solved equations for a specific variable.

New Vocabulary
inverse relation inverse function

Mathematical

 Practices7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

:Why?

Find Inverses Recall that a relation is a set of ordered pairs. The inverse relation is the set of ordered pairs obtained by exchanging the coordinates of each ordered pair. The domain of a relation becomes the range of its inverse, and the range of the relation becomes the domain of its inverse.

Key Concept Inverse Relations

Words Two relations are inverse relations if and only if whenever one relation contains the element (a, b), the other relation contains the element (b, a).
Example $\quad A$ and B are inverse relations.
$A=\{(1,5),(2,6),(3,7)\} \quad B=\{(5,1),(6,2),(7,3)\}$

Example 1 Find an Inverse Relation

GEOMETRY The vertices of $\triangle A B C$ can be represented by the relation $\{(1,-2),(2,5)$, $(4,-1)\}$. Find the inverse of this relation. Describe the graph of the inverse.
Graph the relation. To find the inverse, exchange the coordinates of the ordered pairs. The inverse of the relation is $\{(-2,1),(5,2),(-1,4)\}$.
Plotting these points shows that the ordered pairs describe the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ as a reflection of $\triangle A B C$ in the line $y=x$.

Guided Practice

1. GEOMETRY The ordered pairs of the relation $\{(-8,-3),(-8,-6),(-3,-6)\}$ are the coordinates of the vertices of a right triangle. Find the inverse of this relation.
Describe the graph of the inverse.

As with relations, the ordered pairs of inverse functions are also related. We can write the inverse of the function $f(x)$ as $f^{-1}(x)$.

Reading Math

Sense-Making f^{-1} is read finverse or the inverse of f. Note that -1 is not an exponent.

Go Online!

Explore the inverses of several functions and figure out when inverse functions exist and when they don't using The Geometer's Sketchpad ${ }^{\circledR}$ activity in ConnectED.

Study Tip

Functions The inverse of the function in part b is not a function since it does not pass the vertical line test.

Key Concept Property of Inverses

Words If f and f^{-1} are inverses, then $f(a)=b$ if and only if $f^{-1}(b)=a$.
Example Let $f(x)=x-4$ and represent its inverse as $f^{-1}(x)=x+4$.
Evaluate $f(6) . \quad$ Evaluate $f^{-1}(2)$.
$f(x)=x-4$
$f^{-1}(x)=x+4$
$f(6)=6-4$ or 2
$f^{-1}(2)=2+4$ or 6
Because $f(x)$ and $f^{-1}(x)$ are inverses, $f(6)=2$ and $f^{-1}(2)=6$.

The inverse of a function can be found by exchanging the domain and the range.

Example 2 Find and Graph an Inverse

Find the inverse of each function. Then graph the function and its inverse.
a. $f(x)=2 x-5$

Step 1 Rewrite the function as an equation relating x and y.

$$
f(x)=2 x-5 \rightarrow y=2 x-5
$$

Step 2 Exchange x and y in the equation. $x=2 y-5$
Step 3 Solve the equation for y.

$$
\begin{aligned}
x & =2 y-5 & & \text { Inverse of } y=2 x-5 \\
x+5 & =2 y & & \text { Add } 5 \text { to each side. } \\
\frac{x+5}{2} & =y & & \text { Divide each side by } 2 .
\end{aligned}
$$

Step 4 Replace y with $f^{-1}(x)$.

$$
y=\frac{x+5}{2} \rightarrow f^{-1}(x)=\frac{x+5}{2}
$$

The inverse of $f(x)=2 x-5$ is $f^{-1}(x)=\frac{x+5}{2}$.
The graph of $f^{-1}(x)=\frac{x+5}{2}$ is the reflection of
the graph of $f(x)=2 x-5$ in the line $y=x$.
b. $f(x)=x^{2}+1$

Step $1 f(x)=x^{2}+1 \rightarrow y=x^{2}+1$
Step $2 x=y^{2}+1$
Step 3

$$
\begin{aligned}
x & =y^{2}+1 \\
x-1 & =y^{2} \\
\pm \sqrt{x-1} & =y \quad \text { Take the square } \\
& \quad \text { root of each side. }
\end{aligned}
$$

Step $4 y= \pm \sqrt{x-1}$
Graph $y= \pm \sqrt{x-1}$ by reflecting the graph
of $f(x)=x^{2}+1$ in the line $y=x$.

Guided Practice

Find the inverse of each function. Then graph the function and its inverse.
2A. $f(x)=\frac{x-3}{5}$
2B. $f(x)=3 x^{2}$

Not all functions have an inverse function. The graph of the initial relation in Example 2 b is a function because it passes the vertical line test. However, its inverse relation fails this test, so it is not a function. The reflection relationship between the graph of a function and its inverse relation leads to the horizontal line test for determining whether an inverse of a function is itself a function.

Key Concept Horizontal Line Test

Words \quad A function f has an inverse function f^{-1} if and only if each horizontal line intersects the graph of the function in at most one point.

Example
Because no horizontal line intersects the graph of f more than once, the inverse function f^{-1} exists.

Sometimes it is necessary to restrict the domain of a function in order for its inverse to be a function.

Example 3 Inverses with Restricted Domains

Find the inverse of $f(x)=x^{2}-6 x+8$. Then graph the function and its inverse.
If necessary, restrict the domain of $f(x)$ so that the inverse is a function.
Step 1 Use a graph to determine whether $f(x)$ and $f^{-1}(x)$ are functions.
$f(x)$ is a function because it passes the vertical line test. However, $f(x)$ does not pass the horizontal line text, which indicates that $f^{-1}(x)$ is not a function.

Step 2 Identify the axis of symmetry.
 The axis of symmetry is $x=3$.

Step 3 Find $f^{-1}(x)$.

$$
\begin{aligned}
f(x) & =x^{2}-6 x+8 & & \text { Original function } \\
y & =x^{2}-6 x+8 & & \text { Replace } f(x) \text { with } y . \\
x & =y^{2}-6 y+8 & & \text { Exchange } x \text { and } y . \\
x-8+9 & =y-6 y+9 & & \text { Complete the square. } \\
x+1 & =(y-3)^{2} & & \text { Simplify. } \\
\pm \sqrt{x+1} & =y-3 & & \text { Take the square root of each side. } \\
3 \pm \sqrt{x+1} & =y & & \text { Add 3 to each side. } \\
f^{-1}(x) & =3 \pm \sqrt{x+1} & & \text { Replace } y \text { with } f^{-1}(x) .
\end{aligned}
$$

Step 4 Find a restricted domain of $f(x)$ so that $f^{-1}(x)$ will be a function.
If the domain is restricted to $(-\infty, 3]$, then the inverse is $f^{-1}(x)=3-\sqrt{x+1}$. If the domain is restricted to $[3, \infty)$, then the inverse is $f^{-1}(x)=3+\sqrt{x+1}$.

Watch Out!

Inverse Functions Be sure to check both $[f \circ g](x)$ and $[g \circ f](x)$ to verify that functions are inverses. By definition, both compositions must be the identity function.

Step 5 Graph.

Notice that in each case, the range of $f^{-1}(x)$ is restricted so that the graph passes the vertical line test.

Guided Practice

3. Find the inverse of $f(x)=x^{2}+7 x+12$. Then graph the function and its inverse. If necessary, restrict the domain of $f(x)$ so that the inverse is a function.
2) Verifying Inverses You can determine whether two functions are inverses by finding both of their compositions. If both compositions equal the identity function $I(x)=x$, then the functions are inverse functions.

Key Concept Inverse Functions

Words Two functions f and g are inverse functions if and only if both of their compositions are the identity function.
Symbols $\quad f(x)$ and $g(x)$ are inverses if and only if $[f \circ g](x)=x$ and $[g \circ f](x)=x$.

Example $4 \quad$ Verify that Two Functions are Inverses

Determine whether each pair of functions are inverse functions. Explain your reasoning.
a. $f(x)=3 x+9$ and $g(x)=\frac{1}{3} x-3$

Verify that the compositions of $f(x)$ and $g(x)$ are identity functions.

$$
\begin{aligned}
{[f \circ g](x) } & =f[g(x)] & {[g \circ f](x) } & =g[f(x)] \\
& =f\left(\frac{1}{3} x-3\right) & & =g(3 x+9) \\
& =3\left(\frac{1}{3} x-3\right)+9 & & =\frac{1}{3}(3 x+9)-3 \\
& =x-9+9 \text { or } x & & =x+3-3 \text { or } x
\end{aligned}
$$

The functions are inverses because $[f \circ g](x)=[g \circ f](x)=x$.
b. $f(x)=4 x^{2}$ and $g(x)=2 \sqrt{x}$

$$
\begin{aligned}
{[f \circ g](x) } & =f(2 \sqrt{x}) \\
& =4(2 \sqrt{x})^{2} \\
& =4(4 x) \text { or } 16 x
\end{aligned}
$$

Because $[f \circ g](x) \neq x, f(x)$ and $g(x)$ are not inverses.

Guided Practice

4A. $f(x)=3 x-3, g(x)=\frac{1}{3} x+4$
4B. $f(x)=2 x^{2}-1, g(x)=\sqrt{\frac{x+1}{2}}$

Example 1 Find the inverse of each relation.

1. $\{(-9,10),(1,-3),(8,-5)\}$
2. $\{(-2,9),(4,-1),(-7,9),(7,0)\}$

Example 2 Find the inverse of each function. Then graph the function and its inverse.
3. $f(x)=-3 x$
4. $g(x)=4 x-6$
5. $h(x)=x^{2}-3$

Example 3 Find the inverse for each function. Then graph the function and its inverse. If necessary, restrict the domain of $f(x)$ so that the inverse is a function.
6. $f(x)=x^{2}+4 x-5$
7. $f(x)=x^{2}-16 x+63$

Example 4 Determine whether each pair of functions are inverse functions. Write yes or no.
8. $f(x)=x-7$
9. $f(x)=\frac{1}{2} x+\frac{3}{4}$
$g(x)=x+7$
$g(x)=2 x-\frac{4}{3}$
10. $f(x)=2 x^{3}$
$g(x)=\frac{1}{3} \sqrt{x}$

Practice and Problem Solving

Example 1 Find the inverse of each relation.
11. $\{(-8,6),(6,-2),(7,-3)\}$
12. $\{(7,7),(4,9),(3,-7)\}$
13. $\{(8,-1),(-8,-1),(-2,-8),(2,8)\}$
14. $\{(4,3),(-4,-4),(-3,-5),(5,2)\}$

Example 2
(ini SENSE-MAKING Find the inverse of each function. Then graph the function and its inverse.
15. $f(x)=x+2$
16. $g(x)=5 x$
17. $f(x)=-2 x+1$
18. $h(x)=\frac{x-4}{3}$
19. $f(x)=-\frac{5}{3} x-8$
20. $g(x)=x+4$
21. $h(x)=x^{2}+4$
22. $f(x)=\frac{1}{2} x^{2}-1$
23. $f(x)=(x+1)^{2}+3$

Example 3 Find the inverse for each function. Then graph the function and its inverse. If necessary, restrict the domain of $f(x)$ so that the inverse is a function.
24. $f(x)=4 x$
25. $f(x)=-8 x+9$
26. $f(x)=5 x^{2}$
27. $f(x)=x^{2}+12 x+32$
28. $f(x)=x^{2}-22 x+120$
29. $f(x)=x^{2}-36 x-160$

Example 4 Determine whether each pair of functions are inverse functions. Write yes or no.
30. $f(x)=2 x+3$
$g(x)=2 x-3$
31. $f(x)=4 x+6$
$g(x)=\frac{x-6}{4}$
32. $f(x)=-\frac{1}{3} x+3$
$g(x)=-3 x+9$
33. $f(x)=-6 x$
$g(x)=\frac{1}{6} x$
34. $f(x)=\frac{1}{2} x+5$
$g(x)=2 x-10$
35. $f(x)=\frac{x+10}{8}$
$g(x)=8 x-10$
36. $\begin{aligned} f(x) & =\frac{2}{3} x^{3} \\ g(x) & =\sqrt{\frac{2}{3} x}\end{aligned}$
(37) $\begin{aligned} f(x) & =(x+6)^{2} \\ g(x) & =\sqrt{x}-6\end{aligned}$
38. $f(x)=2 \sqrt{x-5}$
$g(x)=\frac{1}{4} x^{2}-5$
39. FUEL The average miles traveled for every gallon g of gas consumed by Leroy's car is represented by the function $m(g)=28 \mathrm{~g}$.
a. Find a function $c(g)$ to represent the cost per gallon of gasoline.
b. Use inverses to determine the function used to represent the cost per mile traveled in Leroy's car.
40. MULTI-STEP Carlos is looking to trade in his old car for a new one. He has 6 payments remaining on his old car. The dealer is offering 0% financing and a $\$ 4000$ trade-in with the purchase of a new car. Carlos plans to take out a 5-year loan on the new car.
a. If his current monthly payment is $\$ 280$ and he doesn't want to pay more than $\$ 300$ per month on a car, what is the most expensive new car that he can afford?
b. Describe your solution process.
(41) GEOMETRY The formula for the area of a circle is $A=\pi r^{2}$.
a. Find the inverse of the function.
b. Use the inverse to find the radius of a circle with an area of 36 square centimeters.

Use the horizontal line test to determine whether the inverse of each function is also

 a function.42. $f(x)=2 x^{2}$
43. $f(x)=x^{3}-8$
44. $g(x)=x^{4}-6 x^{2}+1$
45. $h(x)=-2 x^{4}-x-2$
46. $g(x)=x^{5}+x^{2}-4 x$
47. $h(x)=x^{3}+x^{2}-6 x+12$
48. SHOPPING Felipe bought a used car. The sales tax rate was 7.25% of the selling price, and he paid $\$ 350$ in processing and registration fees. Find the selling price if Felipe paid a total of $\$ 8395.75$.
49. TEMPERATURE A formula for converting degrees Celsius to Fahrenheit is $F(x)=\frac{9}{5} x+32$.
a. Find the inverse $F^{-1}(x)$. Show that $F(x)$ and $F^{-1}(x)$ are inverses.
b. Explain what purpose $F^{-1}(x)$ serves.
50. MEASUREMENT There are approximately 1.852 kilometers in a nautical mile.
a. Write a function that converts nautical miles to kilometers.
b. Find the inverse of the function that converts kilometers back to nautical miles.
c. Using composition of functions, verify that these two functions are inverses.
51. MULTIPLE REPRESENTATIONS Consider the functions $y=x^{n}$ for $n=0,1,2, \ldots$.
a. Graphing Use a graphing calculator to graph $y=x^{n}$ for $n=0,1,2,3$, and 4 .
b. Tabular For which values of n is the inverse a function? Record your results in a table.
c. Analytical Make a conjecture about the values of n for which the inverse of $f(x)=x^{n}$ is a function. Assume that n is a whole number.

H.O.T. Problems Use Higher-Order Thinking Skills

52. (N1P) REASONING If a relation is not a function, then its inverse is sometimes, always, or never a function. Explain your reasoning.
53. OPEN-ENDED Give an example of a function and its inverse. Verify that the two functions are inverses.
54. CHALLENGE Give an example of a function that is its own inverse.
55. (11P) CONSTRUCT ARGUMENTS Show that the inverse of a linear function $y=m x+b$, where $m \neq 0$ and $x \neq b$, is also a linear function.
56. WRITING IN MATH Suppose you have a composition of two functions that are inverses. When you put in a value of 5 for x, why is the result always 5 ?

Preparing for Assessment

57. The inverse relation of which function is not a function? (MD) 3A $f(x)=x^{2}-2$B $f(x)=2 x^{3}+3$C $f(x)=\sqrt{x-3}$
$\bigcirc \mathbf{D} f(x)=\sqrt[3]{2 x+1}$
58. Find the inverse of $f(x)=\frac{1}{x^{2}} 1,6$
59. Let $f(n)=2 n$ where $n \neq 0$. If $n=m$, which statement must be true? 3A $f^{-1}(m)=m$B $f^{-1}(m)=2 m$C $f^{-1}\left(\frac{1}{2} m\right)=m$D $f^{-1}(2 m)=m$
$\bigcirc \mathbf{E} \quad f^{-1}(2 m)=4 m$
60. MULTI-STEP Consider the function $f(x)=\frac{x+2}{2}$.
a. Work is shown below to find the inverse function $f^{1}(x)$. Which lines contain errors if the intention is to find the inverse function? Choose all that apply.
\square A $f(x)=\frac{x+2}{2}$
\square B $y=\frac{x+2}{2}$C $x=\frac{y+2}{2}$D $2 y=y+2$E $\quad 2 x-2=y$F $f^{-1}(x)=2 y-2$
b. Write the correct inverse function for $f(x)=\frac{x+2}{2}$.
c. What results when $f\left(f^{-1}(x)\right)$ is calculated?
d. What results when $f^{-1}(f(x))$ is calculated?
61. Which pairs of functions below are inverse functions? Choose all that apply.

A $f(x)=\frac{x+2}{2}$ and $f(x)=\frac{y+2}{2}$
\square B $f(x)=3 x+9$ and $f(x)=\frac{1}{3} x-3$C $x=\frac{\sqrt{y}}{2}$ and $2 x^{2}=y$
$\square \mathbf{D} \quad x=\frac{\sqrt{y}}{2}$ and $2 y^{2}=x$E $\quad 3 x-3=y$ and $y=\frac{x+3}{3}$
\square F $\quad 3 x-3=y$ and $y=\frac{x-3}{3}$
62. Does the inverse of each function pass the vertical line test? Choose all for which the answer is yes.
(iil) 3
$\square \mathbf{A} f(x)=\frac{x+2}{2}$B $f(x)=3 \sqrt{x}+9$C $2 y^{2}=x$
D $x=\frac{\sqrt{y}}{2}$
$\square \mathrm{E} \quad y=\frac{x+3}{3}$
\square F $y=\frac{x^{4}-3}{3}$
63. Find the inverse of $f(x)=\frac{\sqrt{x}}{2}$ and then graph the function and its inverse. 1, 4, 6
64. Given that $f(2)=4, f(4)=6$, and $f(6)=8$, what is the value of $f^{-1}\left(f^{-1}(6)\right)$? (inP 2A 2B 4C 6D 8

EXTEND 5-3

Graphing Technology Lab Inverse Functions and Relations

You can use a TI-83/84 Plus graphing calculator to compare a function and its inverse using tables and graphs. Note that before you enter any values in the calculator, you should clear all lists.

Activity 1 Graph Inverses with Ordered Pairs

Graph $f(x)=\{(1,2),(2,4),(3,6),(4,8),(5,10),(6,12)\}$ and its inverse.
Step 1 Enter the x-values in L 1 and the y-values in L 2 . Then graph the function.
keystrokes: STAT ENTER 1 ENTER 2 ENTER 3 ENTER 4 ENTER
5 ENTER 6 ENTER $\triangle 2$ ENTER 4 ENTER 6 ENTER 8 ENTER 10 ENTER 12 ENTER 2nd [STAT PLOT] ENTER ENTER GRAPH Adjust the window to reflect the domain and range.

Step 2 Define the inverse function by setting Xlist to L2 and Ylist to L1. Then graph the inverse function.
keystrokes: 2nd [STAT PLOT] $\boldsymbol{\nabla}$ ENTER ENTER $\boldsymbol{\nabla} \boldsymbol{\nabla}$ 2nd [L2] T 2nd [L1] GRAPH

Step3 Graph the line $y=x$.
keystrokes: $\mathrm{Y}=\mathrm{X}, \mathrm{T}, \theta, n$ GRAPH

Step 2:

[0,14$]$ scl: 1 by [0,14$]$ scl: 1
Step 3:

$[0,14]$ scl: 1 by $[0,14]$ scl: 1

Activity 2 Graph Inverses with Function Notation

Graph $f(x)=3 x$ and its inverse $g(x)=\frac{x}{3}$.
Step 1 Clear the data from Activity 1.
kEYstrokes: 2nd [STAT PLOT] ENTER ENTER $\triangle \square$ ENTER ENTER 2nd [QUIT]

Step2 Enter $f(x)$ as $\mathbf{Y 1}, g(x)$ as $\mathbf{Y} 2$, and $y=x$ as $\mathbf{Y} 3$. Then graph.
KEYSTROKES: $\mathrm{Y}=3$ X,T,,n ENTER $\mathrm{X}, \mathrm{T}, \theta, n \div 3$ ENTER
X,T, θ, n GRAPH

[0, 14] scl: 1 by [0, 14] scl: 1

Exercises

Graph each function $f(x)$ and its inverse $g(x)$. Then graph $(f \circ g)(x)$.

1. $f(x)=5 x$
2. $f(x)=x-3$
3. $f(x)=2 x+1$
4. $f(x)=\frac{1}{2} x+3$
5. $f(x)=x^{2}$
6. $f(x)=x^{2}-3$
7. What is the relationship between the graphs of a function and its inverse?
8. MAKE A CONJECTURE For any function $f(x)$ and its inverse $g(x)$, what is $(f \circ g)(x)$?

Given $f(x)=2 x^{2}+4 x-3$ and $g(x)=5 x-2$, find each function. (Lesson 5-1)

1. $(f+g)(x)$
2. $(f-g)(x)$
3. $(f \cdot g)(x)$
4. $\left(\frac{f}{g}\right)(x)$
5. FINANCE A small company is producing a new product. The revenue $r(x)$ from the sale of x units of the new product is expected to be $r(x)=10 x$. The cost of manufacturing x units is $c(x)=2.25 x+$ 2000. (Lesson 5-1)
a. Write the profit function.
b. Find the profit on 1000 units of the product.
c. (HD) What mathematical practice did you use to solve this problem?

Given $f(x)=2 x^{2}+4 x-3$ and $g(x)=5 x-2$, find each function. (Lesson 5-2)
6. $[f \circ g](x)$
7. $[g \circ f](x)$
8. PRODUCTION The cost in dollars of producing p cell phones in a factory is represented by $C(p)=5 p+$ 60 . The number of cell phones produced in h hours is represented by $P(h)=40 h$. (Lesson 5-2)
a. Find the composition function.
b. Determine the cost of producing cell phones for 8 hours.

Find $[f \circ g](x)$ and $[g \circ f](x)$, if they exist. State the domain and range for each composed function. (Lesson 5-2)
9. $f(x)=4 x$
$g(x)=x-8$
10. $f(x)=3 x-1$
$g(x)=5 x+1$
11. $f(x)=-2 x$
$g(x)=x^{2}-8$
12. SHOPPING Mrs. Ross is shopping for her children's school clothes. She has a coupon for 25% off her total. The sales tax of 6% is added to the total after the coupon is applied. (Lesson 5-2)
a. Express the total price after the discount and the total price after the tax using function notation. Let x represent the price of the clothing, $p(x)$ represent the price after the 25% discount, and $g(x)$ represent the price after the tax is added.
b. Which composition of functions represents the final price, $p[g(x)]$ or $g[p(x)]$? Explain your reasoning.

Determine whether each pair of functions are inverse

 functions. Write yes or no. (Lesson 5-3)13. $f(x)=2 x+16$
$g(x)=\frac{1}{2} x-8$
14. $g(x)=4 x+15$
$h(x)=\frac{1}{4} x-15$
15. $f(x)=x^{2}-5$
$g(x)=5+x^{-2}$
16. $g(x)=-6 x+8$
$h(x)=\frac{8-x}{6}$

Find the inverse of each function, if it exists. (Lesson 5-3)
17. $h(x)=\frac{2}{5} x+8$
18. $f(x)=\frac{4}{9}(x-3)$
19. $h(x)=-\frac{10}{3}(x+5)$
20. $f(x)=\frac{x+12}{7}$

Use the horizontal line test to determine whether the inverse of each function is also a function. (Lesson 5-3)
21. $f(x)=4 x-1$
22. $f(x)=10 x^{2}$
23. $f(x)=3 x^{3}-8$
24. JOBS Louise runs a lawn care service. She charges $\$ 25$ for supplies plus $\$ 15$ per hour. The function $f(h)=15 h+25$ gives the cost $f(h)$ for h hours of work. (Lesson 5-3)
a. Find $f^{-1}(h)$. What is the significance of $f^{-1}(h)$?
b. If Louise charges a customer $\$ 85$, how many hours did she work?

Graphing Square Root Functions

:'Then : :Now Why?

- You simplified expressions with square roots.

Mathematical

 Practices1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
4 Model with mathematics.

Square Root Functions If a function contains the square root of a variable, it is called a square root function. The square root function is a type of radical function.

Key Concept Parent Function of Square Root Functions

Parent function: $f(x)=\sqrt{x}$
Domain:
$\{x \mid x \geq 0\}$ or $[0,+\infty)$
Range:
$\{f(x) \mid f(x) \geq 0\}$ or $[0,+\infty)$
Intercepts:
$x=0, f(x)=0$
Symmetry:
none
Not defined:
$x<0$
End behavior:
$x \rightarrow 0, f(x) \rightarrow 0 ; x \rightarrow+\infty, f(x) \rightarrow+\infty$
Extrema:
minimum at $(0,0)$

The domain of a square root function is limited to values for which the square root function is defined.

Example 1 Identify Domain and Range

Identify the domain and range of $f(x)=\sqrt{x+4}$.
The domain only includes values for which the radicand is nonnegative.

$$
\begin{aligned}
& x+4 \geq 0 \\
& \quad x \geq-4 \quad \text { Write an inequality. } \\
& \begin{array}{c}
\text { D }=[-4,+\infty),\{x \mid x \geq-4\}, \\
\text { or }\{-4 \leq x<\infty\} .
\end{array}
\end{aligned}
$$

Find $f(-4)$ to determine the lower limit of the range.

$$
\begin{aligned}
& f(-4)=\sqrt{-4+4} \text { or } 0 \\
& \mathrm{R}=[0,+\infty),\{f(x) \mid f(x) \geq 0\} \\
& \text { or }\{0 \leq x<\infty\}
\end{aligned}
$$

Guided Practice

Identify the domain and range of each function.
1A. $f(x)=\sqrt{x-3}$
1B. $f(x)=\sqrt{x+6}+2$

Study Tip

Domain and Range The limits on the domain and range also represent the initial point of the graph of a square root function.

Go Online!

Follow along with your graphing calculator as you watch a Personal Tutor graph a square root function.

The same techniques used to transform the graph of other functions you have studied can be applied to the graphs of square root functions.

Key Concept Transformations of Square Root Functions

$$
f(x)=a \sqrt{x-h}+k
$$

h-Horizontal Translation

h units right if h is positive
$|h|$ units left if h is negative
The domain is $\{x \mid x \geq h\}$.

k-Vertical Translation

k units up if k is positive $|k|$ units down if k is negative

If $a>0$, then the range is $\{f(x) \mid f(x) \geq k\}$. If $a<0$, then the range is $\{f(x) \mid f(x) \leq k\}$.

a-Orientation and Shape

- If $a<0$, the graph is reflected across the x-axis.
- If $|a|>1$, the graph is stretched vertically.
- If $0<|a|<1$, the graph is compressed vertically.

Example 2 Graph Square Root Functions

Graph each function. State the domain and range.
a. $y=\sqrt{x-2}+5$

The minimum point is at $(h, k)=(2,5)$.
Make a table of values for $x \geq 2$, and graph the function. The graph is the same shape as $f(x)=\sqrt{x}$, but is translated 2 units right and 5 units up. Notice the end behavior. As x increases, y increases.
$\mathrm{D}=[2,+\infty),\{x \mid x \geq 2\}$, or $\{2 \leq x<+\infty\}$
$\mathrm{R}=[5,+\infty),\{y \mid y \geq 5\}$, or $\{5 \leq x<+\infty\}$

x	y
2	5
3	6
4	6.4
5	6.7
6	7
7	7.2
8	7.4

b. $y=-2 \sqrt{x+3}-1$

The minimum domain value is at h or -3 . Make a table of values for $x \geq-3$, and graph the function. Because a is negative, the graph is similar to the graph of $f(x)$ $=\sqrt{x}$, but is reflected in the x-axis. Because $|a|>1$, the graph is vertically stretched. It is also translated 3 units left and 1 unit down.

x	y
-3	-1
-2	-3
-1	-3.8
0	-4.5
1	-5
2	-5.5
3	-5.9

$$
\begin{aligned}
& \mathrm{D}=[-3,+\infty),\{x \mid x \geq-3\} \\
& \text { or }\{-3 \leq x<+\infty\} \\
& \mathrm{R}=(-\infty,-1],\{y \mid y \leq-1\} \text {, } \\
& \text { or }\{-\infty<x \leq-1\}
\end{aligned}
$$

Guided Practice

2A. $f(x)=2 \sqrt{x+4}$
2B. $f(x)=\frac{1}{4} \sqrt{x-5}+3$

2Analyze Square Root Functions Previously you learned that an inverse relation interchanges the x - and y-coordinates of the original relation. For the power function $f(x)=x^{2}$, if the domain of x is restricted to nonnegative values, then the inverse of f is the function $f^{-1}(x)=\sqrt{x}, x \geq 0$.

Real-World Link
On every string, the guitar player has an option of decreasing the length of the string in about 24 different ways. This will produce 24 different frequencies on each string

Source: Guitar World

Problem-Solving Tip

(111) Modeling Making a table is a good way to organize ordered pairs in order to see the general behavior of a graph.

Problem-Solving Tip

Reasoning Point out that if the domain of $f(x)=x^{2}$ is restricted to $x \leq 0$, its inverse would be the function $f^{-1}(x)=-\sqrt{x}$.

Real-World Example 3 Use Graphs to Analyze Square Root Functions

MUSIC Refer to the application at the beginning of the lesson. The pitch, or frequency, measured in hertz (Hz) of a certain string can be modeled by
$f(T)=\frac{1}{1.28} \sqrt{\frac{T}{0.0000708}}$, where T is tension in kilograms.
a. Graph the function for tension in the domain $\{T \mid 0 \leq T \leq 10\}$.

Make a table of values for $0 \leq T \leq 10$ and graph.

T	$y(T)$
0	0
1	92.8
2	131.3
3	160.8
4	185.7
5	207.6

T	$f(T)$
6	227.4
7	245.7
8	262.6
9	278.5
10	293.6

b. How much tension is needed for a pitch of over 200 Hz ?

According to the graph and the table, more than 4.5 kilograms of tension is needed for a pitch of more than 200 hertz.

Guided Practice

3. MUSIC The frequency of vibrations for a certain guitar string when it is plucked can be determined by $F=200 \sqrt{T}$, where F is the number of vibrations per second and T is the tension measured in pounds. Graph the function for $0 \leq T \leq 10$. Then determine the frequency for $T=3,6$, and 9 pounds.

Example 4 Find the Inverse of Power Function $f(x)=x^{2}$

Find the inverse of $f(x)=x^{2}, x \geq 0$. Graph $f(x)$ and $f^{-1}(x)$ on the same coordinate plane.

$$
\begin{aligned}
f(x) & =x^{2} & & \text { Write the original function. } \\
y & =x^{2} & & \text { Replace } f(x) \text { with } y . \\
x & =y^{2} & & \text { Interchange } x \text { and } y . \\
\pm \sqrt{x} & =y & & \text { Take the square root of both sides. }
\end{aligned}
$$

Because the domain of f is restricted to nonnegative values of x, the range of f^{-1} must also be restricted to nonnegative values. So, the inverse of f is $f^{-1}(x)=\sqrt{x}, x \geq 0$.
The graph of $f^{-1}(x)=\mathrm{R} x$ is a reflection of the graph of $f(x)=x^{2}$, $x \geq 0$, in the line $y=x$, shown as a dashed line on the graph.

Guided Practice

4. Find the inverse of $f(x)=x^{2}+1, x \geq 0$ and graph $f(x)$ and $f^{-1}(x)$ on the same coordinate plane.

Example 1 Identify the domain and range of each function.

1. $f(x)=\sqrt{4 x}$
2. $f(x)=\sqrt{x-5}$
3. $f(x)=\sqrt{x+8}-2$

Example 2 Graph each function. State the domain and range.

4. $f(x)=\sqrt{x}-2$
5. $f(x)=3 \sqrt{x-1}$
6. $f(x)=\frac{1}{2} \sqrt{x+4}-1$
7. $f(x)=-\sqrt{3 x-5}+5$

Example 3 8. OCEAN The speed that a tsunami, or tidal wave, can travel is modeled by the equation $v=356 \sqrt{d}$, where v is the speed in kilometers per hour and d is the average depth of the water in kilometers. A tsunami in the ocean is found to be traveling at 145 kilometers per hour. What is the average depth of the water rounded to the nearest hundredth of a kilometer?

Example 4 Find the inverse of each function. Then graph the function and its inverse on the same coordinate plane.
9. $f(x)=3 x^{2}, x \geq 0$
10. $f(x)=x^{2}+2, x \geq 0$
11. $f(x)=-6 x^{2}, x \geq 0$
12. $f(x)=\frac{1}{2} x^{2}, x \geq 0$

Example 1 Identify the domain and range of each function.
13. $f(x)=-\sqrt{2 x}+2$
14. $f(x)=\sqrt{x}-6$
(15) $f(x)=4 \sqrt{x-2}-8$
16. $f(x)=\sqrt{x+2}+5$
17. $f(x)=\sqrt{x-4}-6$
18. $f(x)=-\sqrt{x-6}+5$

Example 2 Graph each function. State the domain and range.

19. $f(x)=\sqrt{6 x}$
20. $f(x)=-\sqrt{5 x}$
21. $f(x)=\sqrt{x-8}$
22. $f(x)=\sqrt{x+1}$
23. $f(x)=\sqrt{x+3}+2$
24. $f(x)=\sqrt{x-4}-10$
25. $f(x)=2 \sqrt{x-5}-6$
26. $f(x)=\frac{3}{4} \sqrt{x+12}+3$
27. $f(x)=-\frac{1}{5} \sqrt{x-1}-4$
28. $f(x)=-3 \sqrt{x+7}+9$

Example 3 29. SKYDIVING The approximate time t in seconds that it takes an object to fall a distance of d feet is given by $t=\sqrt{\frac{d}{16}}$. Suppose a parachutist falls 11 seconds before the parachute opens. How far does the parachutist fall during this time?
30. MODELING The velocity of a roller coaster as it moves down a hill is $V=\sqrt{v^{2}+64 h}$, where v is the initial velocity in feet per second and h is the vertical drop in feet. The designer wants the coaster to have a velocity of 90 feet per second when it reaches the bottom of the hill.
a. If the initial velocity of the coaster at the top of the hill is 10 feet per second, write an equation that models the situation.
b. How high should the designer make the hill?

Example 4 Find the inverse of the function. Then graph the function and its inverse on the same

 coordinate plane.31. $f(x)=2 x^{2}, x \geq 0$
32. $f(x)=x^{2}+1, x \geq 0$
33. $f(x)=-4 x^{2}, x \geq 0$
34. $f(x)=\frac{1}{4} x^{2}, x \geq 0$
35. $f(x)=-\frac{1}{2} x^{2}, x \geq 0$
36. $f(x)=4 x^{2}+2, x \geq 0$
37. $f(x)=9 x^{2}-4, x \geq 0$
38. $f(x)=\frac{3}{4} x^{2}+8, x \geq 0$
39. PHYSICS The kinetic energy of an object is the energy produced due to its motion and mass. The formula for kinetic energy, measured in joules j, is $E=0.5 m v^{2}$, where m is the mass in kilograms and v is the velocity of the object in meters per second.
a. Solve the above formula for v.
b. If a 1500-kilogram vehicle is generating 1 million joules of kinetic energy, how fast is it traveling?
c. Escape velocity is the minimum velocity at which an object must travel to escape the gravitational field of a planet or other object. Suppose a ship that weighs 100,000 kilograms must have a kinetic energy of 3.624×10^{14} joules to escape the gravitational field of Jupiter. Estimate the escape velocity of Jupiter.
40. (N1P) REASONING After an accident, police can determine how fast a car was traveling before the driver put on his or her brakes by using the equation $v=\sqrt{30 f d}$. In this equation, v represents the speed in miles per hour, f represents the coefficient of friction, and d represents the length of the skid marks in feet. The coefficient of friction varies depending on road conditions. Assume that $f=0.6$.
a. Find the speed of a car that skids 25 feet.
b. If your car is going 35 miles per hour, how many feet would it take you to stop?
c. If the speed of a car is doubled, will the skid be twice as long? Explain.

Write the square root function represented by each graph.
41.

42.

43.

44. REASONING In this problem, you will use the following functions to investigate transformations of square root functions.

$$
f(x)=4 \sqrt{x-6}+3 \quad \quad g(x)=\sqrt{16 x+1}-6 \quad \quad h(x)=\sqrt{x+3}+2
$$

a. Graphical Graph each function on the same set of axes.
b. Analytical Identify the transformation on the graph of the parent function. What values caused each transformation?
c. Analytical Which functions appear to be stretched or compressed vertically? Explain your reasoning.
d. Verbal The two functions that are stretched appear to be stretched by the same magnitude. How is this possible?
e. Tabular Make a table of the rate of change for all three functions between 8 and 12 as compared to 12 and 16 . What generalization about rate of change in square root functions can be made as a result of your findings?
(45) PENDULUMS The period of a pendulum can be represented by $T=2 \pi \sqrt{\frac{L}{g}}$, where T is the time in seconds, L is the length in feet, and g is gravity, 32 feet per second squared.
a. Graph the function for $0 \leq L \leq 10$.
b. What is the period for lengths of 2,5 , and 8 feet?
46. PHYSICS Using the function $m=\frac{m_{0}}{\sqrt{1-\left(\frac{v^{2}}{c^{2}}\right)}}$, Einstein's theory of relativity states that the apparent mass m of a particle depends on its velocity v. An object that is traveling extremely fast, close to the speed of light c, will appear to have more mass compared to its mass at rest, m_{0}.
a. Use a graphing calculator to graph the function for a ship that weighs 10,000 kilograms for the domain $0 \leq v \leq 300,000,000$. Use 300 million meters per second for the speed of light.
b. What viewing window did you use to view the graph?
c. Determine the apparent mass m of the ship for speeds of 100 million, 200 million, and 299 million meters per second.

H.O.T. Problems Use Higher-Order Thinking Skills

47. CHALLENGE Write an equation for a square root function with a domain of $\{x \mid x \geq-4\}$, a range of $\{y \mid y \leq 6\}$, and that passes through $(5,3)$.
48. REASONING For what positive values of a are the domain and range of $f(x)=\sqrt[a]{x}$ the set of real numbers?
49. OPEN-ENDED Write a square root function for which the domain is $\{x \mid x \geq 8\}$ and the range is $\{y \mid y \leq 14\}$.
50. WRITING IN MATH Explain why there are limitations on the domain and range of functions that have inverses that are functions.
51. ERROR ANALYSIS Cleveland thinks that the graph and the equation represent the same function. Molly disagrees. Who is correct? Explain your reasoning.

52. WRITING IN MATH Explain why $y= \pm \sqrt{x}$ is not a function.
53. OPEN-ENDED Write an equation of a relation that contains a radical and its inverse such that
a. the original relation is a function, and its inverse is not a function.
b. the original relation is not a function, and its inverse is a function.

Preparing for Assessment

54a. Which function is represented by the graph? (NiP) 1A $f(x)=2 \sqrt{x+1}+3$B $f(x)=2 \sqrt{x-1}+3$C $f(x)=2 \sqrt{x+1}-3$D $f(x)=2 \sqrt{x-1}-3$

b. What are the domain and range of the function shown in the graph? Use set notation.

c. Which of the following statements are true?

Select all true solutions.
A An x-intercept is 1 .B The domain is all real numbers.
\square C The range is all real numbers.
\square D The graph is of the inverse of

$$
f(x)=\frac{(x-1)^{2}}{4}+3
$$

E The graph has a y-intercept of -1 .

55a.What is the domain of the function? (1) 2

$$
f(x)=3 \sqrt{x-6}-2
$$A $\{x \mid x \geq-6\}$B $\quad\{x \mid x \geq-2\}$C $\{x \mid x \geq 2\}$D $\{x \mid x \geq 6\}$

b. What is the range of the function? Use set notation. (iDi) 1,6

$$
f(x)=3 \sqrt{x-6}-2
$$

56. What is the range of the function? 2

$$
f(x)=-4 \sqrt{x-5}+3
$$

$\bigcirc \mathbf{A} \quad\{f(x) \mid f(x) \leq-12\}$
\bigcirc B $\{f(x) \mid f(x) \geq-12\}$
C $\{f(x) \mid f(x) \leq 3\}$
$\bigcirc \mathbf{D}\{f(x) \mid f(x) \geq 3\}$
57. Let $f(x)=\sqrt{x-3}+1$ and $g(x)=4 f(x)$. How do the domain and range of $f(x)$ and $g(x)$ compare? (HiD) 2

A They have the same domain and range.
B They have the same domain, but the graph of $f(x)$ has lower y-values for each value of x than $g(x)$ does.C They have the same domain, but the graph of $g(x)$ has lower y-values for each value of x than $f(x)$ does.

D They have the same range, but the domain of $f(x)$ has lower x-values for each value of y than $g(x)$ does.E They have the same range, but the domain of $g(x)$ has lower x-values for each value of y than $f(x)$ does.
58. Which of the following is the graph of $f(x)=\frac{1}{2} x^{2}-4$ and its inverse? (in) 1

59. For which value(s) of x would $f(x)=\sqrt{2 x-4}$ be undefined? Select all solutions. (i) 2
$\square \mathbf{A} \quad x=-4$
C $x=2$B $x=0$ D $\quad x=4$
60. Write the equation of a square root function that has been vertically stretched by a factor of 5, translated 3 units to the left, and translated 2 units up from the parent function, $f(x)=\sqrt{x}$. (HiP) 2
\square

Graphing Cube Root Functions

:"Then root functions.

New

Vocabulary
cube root function inflection point

Mathematical Practices

1 Make sense of problems.
2 Reason abstractly and quantitatively.
4 Model with mathematics.
7 Make use of structure.

Why?

A giraffe is a mammal that has an average life span of 25 years in the wild. It can range in height from 4 to 6 meters, and in weight from 794 to 1270 kilograms.

The height h in meters of some small giraffes weighing x kilograms can be approximated by the cube root function $h(x)=0.45 \sqrt[3]{x}$.

Graph Cube Root Functions A radical function that contains the cube root of a variable is called a cube root function. The domain and range of a cube root function are both all real numbers, and the graph of a cube root function has an inflection point, a point on the curve where the curvature changes direction.

Key Concept Parent Function of Cube Root Functions

Parent function:	$f(x)=\sqrt[3]{x}$
Domain:	$\{x \mid-\infty<x<+\infty\}$ or $(-\infty,+\infty)$
Range:	$\{f(x) \mid-\infty<f(x)<+\infty\}$ or $(-\infty,+\infty)$
Intercepts:	$x=0, y=0$
Symmetry:	Point symmetry about the origin
End behavior:	$f(x) \rightarrow+\infty$ as $x \rightarrow+\infty, f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$
Extrema	None
Inflection point	$(0,0)$

Example 1 Identify Attributes of Cube Root Functions

Identify the domain and range of $f(x)=-\sqrt[3]{x-2}$. Describe the attributes of the graph.

Domain and Range

Domain: all numbers for which the radicand is defined, all real numbers $\mathrm{D}=\{x \mid-\infty<x<+\infty\}$ or $(-\infty,+\infty)$

Range: all output values for the function, all real numbers $\mathrm{R}=\{f(x) \mid-\infty<f(x)<+\infty\}$ or $(-\infty,+\infty)$

Guided Practice

1. $f(x)=-\sqrt[3]{x+3}$

Attributes

End behavior: The values of y decrease as the values of x increase.
$f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$
$f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$
Inflection point: $(2,0)$

Teaching Tip

Reason Abstractly Encourage students to compare the transformations of a cube root function with transformations of a square root function. Have them explain to each other the similarities and differences.

Go Online!

Follow along with your graphing calculator as you watch a Personal Tutor graph a square root function.

The same techniques used to transform the graph of other functions you have studied can be applied to the graphs of cube root functions.

Key Concept Transformations of Cube Root Functions

$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a} \sqrt[3]{\boldsymbol{x}-\boldsymbol{h}}+\boldsymbol{k}$	Inflection Point $(\boldsymbol{h}, \boldsymbol{k})$
$h-$ Horizontal Translation	\boldsymbol{k}-Vertical Translation
h units right if h is positive	kunits up if k is positive
$\|h\|$ units left if h is negative	l\| units down if k is negative
The domain is all real numbers.	The range is all real numbers.

a-Orientation and Shape

- If $a<0$, the graph is reflected across the x-axis.
- If $|a|>1$, the graph is stretched vertically.
- If $0<|a|<1$, the graph is compressed vertically.

Example 2 Graph Cube Root Functions

Graph each function. State key features of the graph.
a. $y=\sqrt[3]{x+3}-4$

Make a table of values and graph the function. The graph is the same shape as $f(x)=\sqrt[3]{x}$, but is translated 3 units to the left and 4 units down.
Domain and Range:
$\mathrm{D}=\{x \mid-\infty<x<+\infty\}$ or $(-\infty,+\infty)$
$\mathrm{R}=\{f(x) \mid-\infty<f(x)<+\infty\}$ or $(-\infty,+\infty)$

x	y
-4	-5
-3	-4
-2	-3
0	-2.6
2	-2.3
5	-2

End behavior: The value of y increases as the value of x increases. Inflection point: $(h, k)=(-3,4)$
b. $y=-2 \sqrt[3]{x-1}+3$

Make a table of values and graph the function. The graph of $f(x)=\sqrt[3]{x}$ is stretched by a factor of 2 , translated 1 unit to the right, 3 units up, and reflected in the line $x=1$.
Domain and Range:
$\mathrm{D}=\{x \mid-\infty<x<+\infty\}$ or $(-\infty,+\infty)$
$\mathrm{R}=\{f(x) \mid-\infty<f(x)<+\infty\}$ or $(-\infty,+\infty)$

x	y
-7	7
-1	5.5
0	5
1	3
2	1
3	0.5

End behavior: The value of y decreases as the
value of x increases. $(h, k)=(1,3)$

Guided Practice

2A. $y=\sqrt[3]{x-3}+2$
2B. $y=-3 \sqrt[3]{x+1}-2$

2Analyze Cube Root Functions Previously you learned that an inverse relation interchanges the x - and y-coordinates of the original relation. For the power function $f(x)=x^{3}$, the inverse of f is the function $f^{-1}(x)=\sqrt[3]{x}$ for all real numbers.

Real-World Link
As the world's tallest mammals, giraffes use their height for reaching the leaves of tall trees, and their long legs to help them run as fast as 35 miles per hour for short distances. For longer distances, they run 10 miles per hour.
Source: http://animals
nationalgeographic.c om/animals/ mammals/giraffe/

Problem-Solving Tip

Modeling Making a table is a good way to organize ordered pairs in order to see the general behavior of a graph.

Real-World Example 3 Use Graphs to Analyze Cube Root Functions
NATURE Refer to the application at the beginning of the lesson. A zookeeper found that the height of some small giraffes weighing x kilograms can be modeled by the cube root function $h(x)=0.45 \sqrt[3]{x}$, where h is the height in meters.
a. Make a table and graph the function in the domain $\{x \mid 0 \leq x \leq 1500\}$.

Round output values to the nearest tenth.

x	h
0	0
200	2.6
300	3.0
400	3.3
500	3.6

x	h
600	3.8
700	4.0
800	4.2
900	4.3
1000	4.5

x	h
1100	4.6
1200	4.8
1300	4.9
1400	5.0
1500	5.2

b. Analyze the graph. How should the domain be restricted?

The domain should be restricted to be between about 700 to 1300 kilograms, because that is the approximate weight range for giraffes.

c. What are key features of the graph?

The graph is in the first quadrant only. The values of y increase as the values of x increase.
d. What is the approximate height of a giraffe that weighs 850 kilograms?

According to the graph and the table, the height is about 4.26 meters.

Guided Practice

3. The height of some larger giraffes weighing x kilograms is better modeled by the cube root function $h(x)=0.55 \sqrt[3]{x}$, where h is the height in meters. Graph the function in the domain $\{x \mid 0 \leq x \leq 1300\}$ and analyze the graph. Then determine the approximate height of a giraffe that weighs 1150 kilograms.

Example $4 \quad$ Find the Inverse of Power Function $f(x)=x^{3}$

Find the inverse of $f(x)=x^{3}$. Then graph $f(x)$ and $f^{-1}(x)$ on the same coordinate plane.

```
f(x)=\mp@subsup{x}{}{3}\quad\mathrm{ Write the original function.}
    y=\mp@subsup{x}{}{3}\quad Replace f(x) with y.
    x=\mp@subsup{x}{}{3}\quad Interchange x and y.
\sqrt{3}{x}=y\quad Take the cube root of both sides.
```

Because the domain of f is all real numbers, the range of f^{-1} is also all real numbers. So, the inverse of f is $f^{-1}(x)=\sqrt[3]{x}$ with domain and range all real numbers.

The graph of $f^{-1}(x)=\sqrt[3]{x}$ is a reflection of the graph of $f(x)=x^{3}$ in the line $y=x$, shown as a dashed line on the graph.

Guided Practice

4. Find the inverse of $f(x)=x^{3}-1$. Then graph $f(x)$ and $f^{-1}(x)$ on the same coordinate plane.

Example 1 Identify the domain and range of each function. Describe the attributes of the graph.

1. $f(x)=\sqrt[3]{x-4}$
2. $f(x)=\sqrt[3]{x+2}-3$
3. $f(x)=2 \sqrt[3]{x}-6$

Example 2 Graph each function. State key features of the graph.

4. $f(x)=\sqrt[3]{x}+2$
5. $f(x)=2 \sqrt[3]{x-1}$
6. $f(x)=\frac{1}{2} \sqrt[3]{x+2}-3$
7. $f(x)=-3 \sqrt[3]{x-4}+4$

Example 3 8. GEOMETRY The radius r of a sphere with volume V can be found using the formula $r=\sqrt[3]{\frac{3 V}{4 \pi}}$.
a. Graph the function.
b. Use the graph to determine the approximate radius for volumes of 1000 cubic meters, 8000 cubic meters, and 64,000 cubic meters.
c. How does the volume of the sphere change if the radius is doubled? Explain.

Example 4 Find the inverse of the function. Then graph the function and its inverse on the same coordinate plane.
9. $f(x)=2 x^{3}$
10. $f(x)=x^{3}+1$
11. $f(x)=-4 x^{3}$
12. $f(x)=\frac{1}{2} x^{3}$

Example 1 Identify the domain and range of each function. Describe the attributes of the graph.
13. $f(x)=2 \sqrt[3]{x+4}$
14. $f(x)=-\frac{1}{4} \sqrt[3]{x}+1$
15. $f(x)=\frac{1}{3} \sqrt[3]{x-2}+1$

Example 2 Graph each function. State key features of the graph.

16. $f(x)=\sqrt[3]{x}-3$
17. $f(x)=3 \sqrt[3]{x+1}$
18. $f(x)=\frac{1}{4} \sqrt[3]{x-1}-4$
19. $f(x)=-\sqrt[3]{x+1}-2$
20. $f(x)=2 \sqrt[3]{x}+3$
21. $f(x)=3 \sqrt[3]{x+2}-4$
22. $f(x)=\frac{1}{2} \sqrt[3]{x-3}+1$
(23) $f(x)=-2 \sqrt[3]{x-4}-2$
23. $f(x)=\frac{1}{3} \sqrt[3]{x}-1$
24. $f(x)=\frac{1}{2} \sqrt[3]{x-2}+2$
25. (H1) PERSERVERANCE The radius r of the orbit of a communications satellite is given by $r=\sqrt[3]{\frac{G M t^{2}}{4 \pi^{2}}}$, where G is the universal gravitational constant, M is the mass of Earth, and t is the time it takes the satellite to complete one orbit. Find the radius of the satellite's orbit if G is $6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}, M$ is 5.98×10^{24} kilograms, and t is 2.6×10^{6} seconds.
26. MODELING A fruit grower has found that the circumference C, in inches, of most of his fruit crop can be modeled by the cube root equation $C=\sqrt[3]{\frac{W}{0.009}}$, where W is the weight in ounces.
a. Graph the function.
b. What is the approximate circumference of a piece of fruit that weighs 8.5 ounces?
c. What is the approximate weight of a piece of fruit with a circumference of 8 inches?
d. Explain why it is difficult to give a function that will work on all fruit.
27. PHYSICS Johannes Kepler developed the formula $d=\sqrt[3]{6 t^{2}}$, where d is the distance of a planet to the Sun in millions of miles and t is the number of Earth days that it takes for the planet to orbit the Sun.
a. Use a graphing calculator to graph the function. Explain why the graph of the function $f(t)=\sqrt[3]{6 t^{2}}$ is not the graph of a standard cube root function.
b. If the length of a year on Venus is 224.7 Earth days, how far is the Sun from Venus?
28. MODELING The surface area S of a sphere can be determined from the volume of the sphere using the formula $S=\sqrt[3]{36 \pi V^{2}}$, where V is the volume.
a. Use a graphing calculator to graph the function. Explain why the graph of $S=\sqrt[3]{36 \pi V^{2}}$ is not the graph of a standard cube root function.
b. Determine the surface area of a sphere with a volume of 200 cubic inches.

Write the cube root function represented by each graph. Points with integer coordinates are shown, with one point the inflection point.
30.

(31)

32.

33. GEOMETRY The side length of a cube is determined by $r=\sqrt[3]{V}$, where V is the volume in cubic units.
a. Graph the function.
b. What is the domain and range of the function? Justify your reasoning.
c. What is the side length of a cube with a volume of 512 cubic centimeters?

H.O.T. Problems Use Higher-Order Thinking Skills

34. REASONING Explain how to find an equation for a cube root function that passes through the points $(-8,-1)$ if the inflection point is $(0,0)$.
35. REASONING Is the function $f(x)=\sqrt[3]{x}$ odd, even, or neither? Explain.
36. WRITING IN MATH Explain why there are no limitations on the domain and range of a cube root function.
37. ERROR ANALYSIS Lin thinks that the graph and the equation $g(x)=\sqrt[3]{x}$, represent the same function. Milo disagrees. Who is correct? Explain your reasoning.

38. CHALLENGE Use a graphing calculator to explore the graphs of $f(x)=\sqrt{x}, g(x)=\sqrt[3]{x}$, $h(x)=\sqrt[4]{x}$, and $j(x)=\sqrt[5]{x}$. Describe the graph of $s(x)=\sqrt[n]{x}$, if n is even and if n is odd?

Preparing for Assessment

39. Use the graph to answer the following. (in) 1

a. Which function is represented by the graph? (in) 1
A $y=\sqrt[3]{x-3}-2$C $y=\sqrt[3]{x+3}-2$
(B $y=\sqrt[3]{x-3}+2$
D $y=\sqrt[3]{x+2}-3$
b. What are the domain and range of the function shown in the graph? Use set notation. (in) 2

c. Which statements are true for the function in the graph? Select all solutions.A An x-intercept is 5 .
B The domain is all real numbers.
C A point of inflection is $(-3,-2)$.D The graph is the inverse ofE The graph has a y-intercept of -1 .
40. Which of the following will have a graph that is stretched by a factor of 2 , translated 4 units right and 1 unit down? (NiP) 2
\bigcirc
A $y=2 \sqrt[3]{x+4}-1$C $y=\sqrt[3]{2 x-4}-1$B $y=2 \sqrt[3]{x-4}-1$
D $y=2 \sqrt[3]{x-1}+4$
41. The formula $d=\sqrt[3]{6 t^{2}}$ represents d, the distance in millions of miles a planet is from the Sun, in terms of t, the number of Earth days it takes for the planet to orbit the Sun. It takes Mercury 88 Earth days to complete one orbit. To the nearest hundredth, how many millions of miles is Mercury from the Sun? (Nㅏ) 2 \square
42. Write the equation of the inverse of $f(x)=\frac{x^{3}}{3}+6$. (1i8) 1

43. Let $f(x)=\sqrt[3]{x}$ and $g(x)=3 \sqrt[3]{x+2}-5$. How do the domain and range of $f(x)$ and $g(x)$ compare?
(iil) 2
A They have the same domain and range.
B B They have the same domain, but the graph of $f(x)$ has higher y-values for each value of x.C They have the same domain, but the graph of $g(x)$ has higher y-values for each value of x.D They have the same range, but the domain of $f(x)$ has lower x-values for each value of y.
44. Which of the following is the graph of $f(x)=\frac{1}{2} x^{3}+4$ and its inverse?

A

B

C

D

In general, the graph of a cube root function is an s-shaped curve. The graphs are not symmetric with the x - or y-axis or the line $y=-x$ there are no asymptotes. The parent function $(x)=\sqrt[3]{x}$ can be transformed using by af(x), $f(x)+d, f(b x)$, and $f(x-c)$ for positive and negative values of a, b, c, and d.

Mathematical Practices

(M1P) 4 Model with Mathematics

Activity 1 af $(x),-a f(x), f(b x)$, and $f(-b x)$

Work cooperatively. Graph the set of functions on the same screen. Describe any similarities and differences among the graphs.
$f(x)=\sqrt[3]{x}, g(x)=2 \sqrt[3]{x}, h(x)=\sqrt[3]{2 x}$,
$j(x)=-2 \sqrt[3]{x}, k(x)=\sqrt[3]{-2 x}$
The graphs have the same general shape. The functions $f(x), g(x)$, and $h(x)$ lie in the first and third quadrants. The graphs $j(x)$ and $k(x)$ are reflections and lie in the second and fourth quadrants. The graphs of

[$-10,10]$ scl: 1 by [$-10,10]$ scl: 1 $g(x)$ and $j(x)$ are more vertically stretched than $f(x)$. The graphs of $h(x)$ and $k(x)$ are more horizontally compressed than $f(x)$ but less than $g(x)$ and $j(x)$.

Some transformations cause the graph of a function to change location but do not change the shape from the parent function.

Activity $2 f(x-c), f(x+c), f(x)+d$, and $f(x)-d$

Work cooperatively. Graph the set of functions on the same screen.
Describe any similarities and differences among the graphs.
$f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{x+2}, h(x)=\sqrt[3]{x-2}$,
$j(x)=\sqrt[3]{x}+2, k(x)=\sqrt[3]{x}-2$
The graphs have the same shape, but have been translated. The graph of $g(x)$ is shifted 2 units left and $h(x)$ is shifted 2 units right while the graph of $j(x)$ is shifted 2 units up and $k(x)$ shifted 2 units down.

Exercises

Work cooperatively. Examine each set of functions and predict the similarities and differences in their graphs. Use a graphing calculator to confirm your prediction. Write a sentence or two comparing the graphs.

1. $f(x)=\sqrt[3]{x}, g(x)=3 \sqrt[3]{x}, h(x)=-3 \sqrt[3]{x}$
2. $f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{x}+1, h(x)=\sqrt[3]{x}-1$
3. $f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{8 x}, h(x)=\sqrt[3]{-8 x}$
4. $f(x)=\sqrt[3]{x}, g(x)=\sqrt[3]{x-8}, h(x)=\sqrt[3]{x+8}$

LESSON 6

Solving Radical Equations

:‘Then

- You solved polynomial equations.

New

 Vocabularyradical equation
extraneous solution radical inequality

Mathematical

 Practices4 Model with mathematics.

: Now :Why?

When you jump, the time that you are in the air is your hang time. Hang time can be calculated in seconds t if you know the height h of the jump in feet. The formula for hang time is $t=0.5 \sqrt{h}$.
A volleyball player had a hang time of about 0.67 second. How would you calculate the height of her jump?

Solve Radical Equations Radical equations include radical expressions. You can solve a radical equation by raising each side of the equation to a power.

Key Concept Solving Radical Equations

Step 1 Isolate the radical on one side of the equation.
Step2 Raise each side of the equation to a power equal to the index of the radical to eliminate the radical.
Step3 Solve the resulting polynomial equation. Check your results.
When solving radical equations, the result may be a number that does not satisfy the original equation. Such a number is called an extraneous solution.

Example 1 Solve Radical Equations

Solve each equation.

a. $\sqrt{x+2}+4=7$

$$
\begin{aligned}
\sqrt{x+2}+4 & =7 & & \text { Original equation } \\
\sqrt{x+2} & =3 & & \text { Subtract } 4 \text { from each side to isolate the radical. } \\
(\sqrt{x+2})^{2} & =3^{2} & & \text { Square each side to eliminate the radical. } \\
x+2 & =9 & & \text { Find the squares. } \\
x & =7 & & \text { Subtract } 2 \text { from each side. }
\end{aligned}
$$

$$
\text { CHECK } \begin{array}{rlrl}
\sqrt{x+2}+4 & =7 & & \text { Original equation } \\
\sqrt{7+2}+4 \stackrel{?}{=} 7 & & \text { Replace } x \text { with } 7 . \\
7 & =7 \checkmark & & \text { Simplify. }
\end{array}
$$

b. $\sqrt{x-12}=2-\sqrt{x}$

$$
\begin{aligned}
\sqrt{x-12} & =2-\sqrt{x} & & \text { Original equation } \\
(\sqrt{x-12})^{2} & =(2-\sqrt{x})^{2} & & \text { Square each side. } \\
x-12 & =4-4 \sqrt{x}+x & & \text { Find the squares. } \\
-16 & =-4 \sqrt{x} & & \text { Isolate the radical. } \\
4 & =\sqrt{x} & & \text { Divide each side by }-4 . \\
16 & =x & & \text { Square each side. }
\end{aligned}
$$

Study Tip

Tools You can use a graphing calculator to check solutions of equations. Graph each side of the original equation, and examine the intersection.

CHECK $\sqrt{x-12}=2-\sqrt{x}$

$$
\begin{aligned}
\sqrt{16-12} & \stackrel{?}{=} 2-\sqrt{16} \\
\sqrt{4} & \stackrel{?}{=} 2-4 \\
2 & \neq-2 x
\end{aligned}
$$

The solution does not check, so the equation has an extraneous solution. The graphs of $y=\sqrt{x-12}$ and $y=2-\sqrt{x}$ do not intersect, which confirms that there is no real solution.

Guided Practice

1A. $5=\sqrt{x-2}-1$
1B. $\sqrt{x+15}=5+\sqrt{x}$

To undo a square root, you square the expression. To undo a cube root, you must raise the expression to the third power.

Example 2 Solve a Cube Root Equation

Solve $2(6 x-3)^{\frac{1}{3}}-4=0$.
In order to remove the $\frac{1}{3}$ power, or cube root, you must first isolate it and then raise each side of the equation to the third power.

$$
\begin{aligned}
2(6 x-3)^{\frac{1}{3}}-4 & =0 & & \text { Original equation } \\
2(6 x-3)^{\frac{1}{3}} & =4 & & \text { Add } 4 \text { to each side. } \\
(6 x-3)^{\frac{1}{3}} & =2 & & \text { Divide each side by } 2 . \\
{\left[(6 x-3)^{\frac{1}{3}}\right]^{3} } & =2^{3} & & \text { Cube each side. } \\
6 x-3 & =8 & & \text { Evaluate the cubes. } \\
6 x & =11 & & \text { Add } 3 \text { to each side. } \\
x & =\frac{11}{6} & & \text { Divide each side by } 6 .
\end{aligned}
$$

CHECK $2(6 x-3)^{\frac{1}{3}}-4=0$
Original equation

$$
\begin{array}{rlrl}
2\left(6 \cdot \frac{11}{6}-3\right)^{\frac{1}{3}}-4 & \stackrel{?}{=} 0 & & \text { Replace } x \text { with } \frac{11}{6} . \\
2(8)^{\frac{1}{3}}-4 \stackrel{?}{=} 0 & & \text { Simplify. } \\
2(2)-4 \stackrel{?}{=} 0 & & \text { The cube root of } 8 \\
0 & =0 \checkmark & & \text { Subtract. }
\end{array}
$$

Guided Practice

Solve each equation.

2A. $(3 n+2)^{\frac{1}{3}}+1=0$
2B. $3(5 y-1)^{\frac{1}{3}}-2=0$

You can apply the methods used to solve square and cube root equations to solving equations with roots of any index. To undo an nth root, raise to the nth power.

Study Tip

Substitute Values You could also solve the multiplechoice question by substituting each answer for n in the equation to see if the solution is correct.

Study Tip

Radical Inequalities Because a principal square root is never negative, inequalities that simplify to the form $\sqrt{a x+b} \leq c$, where c is a negative number, have no solutions.

Example 3 Solve a Radical Equation

What value of n is a solution to $3(\sqrt[4]{2 n+6})-6=0$?
A -1
B 1
C 5
D 11

$$
\begin{aligned}
3(\sqrt[4]{2 n+6})-6 & =0 & & \text { Original equation } \\
3(\sqrt[4]{2 n+6}) & =6 & & \text { Add } 6 \text { to each side. } \\
\sqrt[4]{2 n+6} & =2 & & \text { Divide each side by } 3 . \\
(\sqrt[4]{2 n+6})^{4} & =2^{4} & & \text { Raise each side to the fourth power. } \\
2 n+6 & =16 & & \text { Evaluate each side. } \\
2 n & =10 & & \text { Subtract } 6 \text { from each side. } \\
n & =5 & & \text { The answer is C. }
\end{aligned}
$$

Guided Practice

3. What value of x is a solution of $4(3 x+6)^{\frac{1}{4}}-12=0$?
A $x=7$
B $x=25$
C $x=29$
D $x=37$

Solve Radical Inequalities A radical inequality has a variable in the radicand. To solve radical inequalities, complete the following steps.

Key Concept Solving Radical Inequalities

Step 1 If the index of the root is even, identify the values of the variable for which the radicand is nonnegative.

Step 2 Solve the inequality algebraically.
Step 3 Test values to check your solution.

Example 4 Solve Radical Equations

Solve $3+\sqrt{5 x-10} \leq 8$.
Step 1 Because the radicand of a square root must be greater than or equal to zero, first solve $5 x-10 \geq 0$ to identify the values of x for which the left side of the inequality is defined.

$$
\begin{aligned}
5 x-10 & \geq 0 & & \text { Set the radicand } \geq 0 . \\
5 x & \geq 10 & & \text { Add } 10 \text { to each side. } \\
x & \geq 2 & & \text { Divide each side by } 5 .
\end{aligned}
$$

Step 2 Solve $3+\sqrt{5 x-10} \leq 8$.

$$
\begin{aligned}
3+\sqrt{5 x-10} & \leq 8 & & \text { Original inequality } \\
\sqrt{5 x-10} & \leq 5 & & \text { Isolate the radical. } \\
5 x-10 & \leq 25 & & \text { Eliminate the radical. } \\
5 x & \leq 35 & & \text { Add } 10 \text { to each side. } \\
x & \leq 7 & & \text { Divide each side by } 5 .
\end{aligned}
$$

Go Online!

Check your mastery of solving radical inequalities by using the Self-Check Quiz in ConnectED.

suchasgan

1 sb -6...

Step 3 It appears that $2 \leq x \leq 7$. You can test some x-values to confirm the solution. Use three test values: one less than 2, one between 2 and 7, and one greater than 7. Organize the test values in a table.

$x=0$	$x=4$	$x=9$
$\begin{aligned} 3+\sqrt{5(0)-10} & \stackrel{?}{8} \\ 3+\sqrt{-10} & \leq 8 x \end{aligned}$	$\begin{aligned} 3+\sqrt{5(4)-10} & \leq 8 \\ 6.16 & \leq 8 \end{aligned}$	$\begin{aligned} 3+\sqrt{5(9)-10} & \stackrel{?}{8} 8 \\ 8.92 & \leq 8 x \end{aligned}$
Because $\sqrt{-10}$ is not a real number, the inequality is not satisfied.	Because $6.16 \leq 8$, the inequality is satisfied.	Because $8.92 \not \subset 8$, the inequality is not satisfied.

The solution checks. Only values in the interval $2 \leq x \leq 7$ satisfy the inequality. You can summarize the solution with a number line.

Guided Practice

Solve each inequality.
4A. $\sqrt{2 x+2}+1 \geq 5$
4B. $\sqrt{4 x-4}-2<4$

Check Your Understanding

Examples 1-2 Solve each equation.

1. $\sqrt{x-4}+6=10$
2. $\sqrt{x+13}-8=-2$
3. $8-\sqrt{x+12}=3$
4. $\sqrt{x-8}+5=7$
(5) $\sqrt[3]{x-2}=3$
5. $(x-5)^{\frac{1}{3}}-4=-2$
6. $(4 y)^{\frac{1}{3}}+3=5$
7. $\sqrt[3]{n+8}-6=-3$
8. $\sqrt{y}-7=0$
9. $2+4 z^{\frac{1}{2}}=0$
10. $5+\sqrt{4 y-5}=12$
11. $\sqrt{2 t-7}=\sqrt{t+2}$
12. REASONING The time T in seconds that it takes a pendulum to make a complete swing back and forth is given by the formula $T=2 \pi \sqrt{\frac{L}{\mathrm{~g}}}$, where L is the length of the pendulum in feet and g is the acceleration due to gravity, 32 feet per second squared.
a. In Tokyo, Japan, a huge pendulum in the Shinjuku building measures 73 feet 9.75 inches. How long does it take for the pendulum to make a complete swing?
b. A clockmaker wants to build a pendulum that takes 20 seconds to swing back and forth. How long should the pendulum be?

Example 3
14. MULTIPLE CHOICE Solve $(2 y+6)^{\frac{1}{4}}-2=0$.
A $y=1$
B $y=5$
C $y=11$
D $y=15$

Example 4 Solve each inequality.
15. $\sqrt{3 x+4}-5 \leq 4$
16. $\sqrt{b-7}+6 \leq 12$
17. $2+\sqrt{4 y-4} \leq 6$
18. $\sqrt{3 a+3}-1 \leq 2$
19. $1+\sqrt{7 x-3}>3$
20. $\sqrt{3 x+6}+2 \leq 5$
21. $-2+\sqrt{9-5 x} \geq 6$
22. $6-\sqrt{2 y+1}<3$

Example 1 Solve each equation. Confirm by using a graphing calculator.
23. $\sqrt{2 x+5}-4=3$
24. $6+\sqrt{3 x+1}=11$
25. $\sqrt{x+6}=5-\sqrt{x+1}$
26. $\sqrt{x-3}=\sqrt{x+4}-1$
27. $\sqrt{x-15}=3-\sqrt{x}$
28. $\sqrt{x-10}=1-\sqrt{x}$
29. $6+\sqrt{4 x+8}=9$
30. $2+\sqrt{3 y-5}=10$
31. $\sqrt{x-4}=\sqrt{2 x-13}$
32. $\sqrt{7 a-2}=\sqrt{a+3}$
33. $\sqrt{x-5}-\sqrt{x}=-2$
34. $\sqrt{b-6}+\sqrt{b}=3$
35. SENSE-MAKING Isabel accidentally dropped her keys from the top of a Ferris wheel. The formula $t=\frac{1}{4} \sqrt{d-h}$ describes the time t in seconds at which the keys are h meters above the ground and Isabel is d meters above the ground. If Isabel was 65 meters high when she dropped the keys, how many meters above the ground will the keys be after 2 seconds?

Example 2 Solve each equation.

36. $(5 n-6)^{\frac{1}{3}}+3=4$
37. $(5 p-7)^{\frac{1}{3}}+3=5$
38. $(6 q+1)^{\frac{1}{4}}+2=5$
39. $(3 x+7)^{\frac{1}{4}}-3=1$
40. $(3 y-2)^{\frac{1}{5}}+5=6$
41. $(4 z-1)^{\frac{1}{5}}-1=2$
42. $2(x-10)^{\frac{1}{3}}+4=0$
43. $3(x+5)^{\frac{1}{3}}-6=0$
44. $\sqrt[3]{5 x+10}-5=0$
45. $\sqrt[3]{4 n-8}-4=0$
46. $\frac{1}{7}(14 a)^{\frac{1}{3}}=1$
47. $\frac{1}{4}(32 b)^{\frac{1}{3}}=1$

Example 3
48. MULTIPLE CHOICE Solve $\sqrt[4]{y+2}+9=14$.
A 23
B 53
C 123
D 623
49. MULTIPLE CHOICE Solve $(2 x-1)^{\frac{1}{4}}-2=1$.
F 41
G 28
H 13
J 1

Example 4 Solve each inequality.
50. $1+\sqrt{5 x-2}>4$
51. $\sqrt{2 x+14}-6 \geq 4$
52. $10-\sqrt{2 x+7} \leq 3$
53. $6+\sqrt{3 y+4}<6$
54. $\sqrt{2 x+5}-\sqrt{9+x}>0$
(55) $\sqrt{d+3}+\sqrt{d+7}>4$
56. $\sqrt{3 x+9}-2<7$
57. $\sqrt{2 y+5}+3 \leq 6$
58. $-2+\sqrt{8-4 z} \geq 8$
59. $-3+\sqrt{6 a+1}>4$
60. $\sqrt{2}-\sqrt{b+6} \leq-\sqrt{b}$
61. $\sqrt{c+9}-\sqrt{c}>\sqrt{3}$
62. PENDULUMS The formula $s=2 \pi \sqrt{\frac{\ell}{32}}$ represents the swing of a pendulum, where s is the time in seconds to swing back and forth and ℓ is the length of the pendulum in feet. Find the length of a pendulum that makes one swing in 1.5 seconds.
63. TURTLES The relationship between the length and weight of certain turtles can be approximated by the equation $L=0.55 \sqrt[3]{W}$, where L is the length in feet and W is the weight in pounds. Solve this equation for W.
64. HANG TIME Refer to the information at the beginning of the lesson regarding hang time. Describe how the height of a jump is related to the amount of time in the air. Write a step-by-step explanation of how to determine the height of the volleyball player's 0.98-second jump.
65) CONCERTS The organizers of a concert are preparing for the arrival of 50,000 people in the open field where the concert will take place. Each person is allotted 5 square feet of space, so the organizers rope off a circular area of 250,000 square feet. Using the formula $A=\pi r^{2}$, where A represents the area of the circular region and r represents the radius of the region, find the radius of this region.
66. WEIGHTLIFTING The formula $M=512-146,230 B^{-\frac{8}{5}}$ can be used to estimate the maximum total mass that a weightlifter of mass B kilograms can lift using the snatch and the clean and jerk. According to the formula, how much does a person weigh who can lift at most 470 kilograms?

H.O.T. Problems Use Higher-Order Thinking Skills

67. ERROR ANALYSIS Which equation does not have a solution?

$$
\sqrt{x-1}+3=4
$$

$$
\sqrt{x-2}+7=10
$$

$$
\sqrt{x+1}+3=4
$$

$$
\sqrt{x+2}-7=-10
$$

68. CHALLENGE Lola is working to solve $(x+5)^{\frac{1}{4}}=-4$. She said that she could tell there was no real solution without even working the problem. Is Lola correct? Explain your reasoning.
69. (iP) REASONING Determine whether $\frac{\sqrt{\left(x^{2}\right)^{2}}}{-x}=x$ is sometimes, always, or never true when x is a real number. Explain your reasoning.
70. OPEN-ENDED Select a whole number. Now work backward to write two radical equations that have that whole number as solutions. Write one square root equation and one cube root equation. You may need to experiment until you find a whole number you can easily use.
71. WRITING IN MATH Explain the relationship between the index of the root of a variable in an equation and the power to which you raise each side of the equation to solve the equation.
72. OPEN-ENDED Write an equation that can be solved by raising each side of the equation to the given power.
a. $\frac{3}{2}$ power
b. $\frac{5}{4}$ power
c. $\frac{7}{8}$ power
73. CHALLENGE Solve $7^{3 x-1}=49^{x+1}$ for x. (Hint: $b^{x}=b^{y}$ if and only if $x=y$.)
(118) REASONING Determine whether the following statements are sometimes, always, or never true for $x^{\frac{1}{n}}=a$. Explain your reasoning.
74. If n is odd, there will be extraneous solutions.
75. If n is even, there will be extraneous solutions.

Preparing for Assessment

76. For what value of x is $\sqrt{x-8}=1-\sqrt{x}$? (in) 1A 1.5B 4.5
\bigcirc C 20.25
〇 \mathbf{D} no real solution
77. The equation $v=\sqrt{64 h}$ approximates the velocity v of a roller coaster car, in feet per second, at the bottom of a hill h feet high. If the car travels at a velocity of 55 feet per second at the bottom of a hill, how high is the hill? Round to the nearest tenth of a foot.

78. If $(2 y+3)^{\frac{1}{3}}+2=5$, what is the value of y ? iii 6
$\bigcirc \mathbf{A}$
A 6
○ B 12
\bigcirc C 30D 170
79. If $\sqrt{p-1}=\frac{2}{w}+3$, what is the value of p in terms of w ? (HD) 5
$\bigcirc \quad \mathbf{A} \quad p=\frac{4}{w^{2}}+16$
$\bigcirc \mathbf{B} \quad p=\frac{4}{w^{2}}+10$
$\bigcirc \mathbf{C} \quad p=\frac{4}{w^{2}}+\frac{6}{w}+10$
$\bigcirc \mathbf{D} \quad p=\frac{4}{w^{2}}+\frac{12}{w}+10$
$\bigcirc \mathbf{E} \quad p=\frac{4}{w^{2}}+\frac{12}{w}+16$
80. Solve for x. 6
$3+\sqrt{3 x+2}=9$
○ $\frac{68}{5}$
C $\frac{22}{9}$
○ $\quad \frac{34}{3}$
D 12
81. Solve for x. 6
$\sqrt{9 x+18} \geq x-2$
82. MULTI-PART Consider the following equation. $\sqrt{x-4}+1=5$ (MP) 13,6
a. Which lines of the work shown correctly belong in the solution of the equation above? Choose all that apply.
\square A $\sqrt{x-4}=4$B $(\sqrt{x-4})^{2}+1^{2}=4$
$\square \mathrm{C}(\sqrt{x-4})^{2}=4$
\square D $\quad x-4=16$
$\square \mathrm{E} \quad(\sqrt{x-4})^{2}=24$
$\square \mathbf{F} \quad x^{2}=20$
b. What is the solution to $\sqrt{x-4}+1=5$?
© $\sqrt{20}$B $\sqrt{20}$
\bigcirc C 4
\bigcirc D 20
c. How can you check the answer?
d. Without doing the arithmetic, rearrange the equation to show the solution. (Write the equation as $x=\ldots$ with an arrangement of 4,1 , and 5 on the other side.)
83. a. Why does the solution to $11+\sqrt{11 x-123} \leq 14$ have two parts? (NiP 1
b. Solve for both parts of the solution of $11+\sqrt{11 x-123} \leq 14$.
c. Does the inequality have a real solution?
84. Find the height of a right triangle whose area is 27 square centimeters with a base of 3 cm and a height of $\sqrt{3 x-5}$ centimeters. (10) 1,6

○ $A \frac{329}{3}$
○ $\quad \frac{34}{3}$
\bigcirc C 18
\bigcirc D 21

You can use a TI-83/84 Plus graphing calculator to solve radical equations and inequalities. One way to do this is to rewrite the equation or inequality so that one side is 0 . Then use the zero feature on the calculator.

Mathematical Practices

(NiP) 4 Model with Mathematics

Example 1 Radical Equation

Solve $\sqrt{x}+\sqrt{x+2}=3$.
Step 1 Rewrite the equation.

- Subtract 3 from each side of the equation to get $\sqrt{x}+\sqrt{x+2}-3=0$.
- Enter the function $y=\sqrt{x}+\sqrt{x+2}-3$ in the $Y=$ list.

2nd $[\sqrt{ }]$ X,T, $\theta, n \square 2 \square-\square$
3 ENTER

Step 3 Estimate the solution.

- Complete the table and estimate the solution(s).

Keystrokes: 2nd [TABLE]

Because the function changes sign from negative to positive between $x=1$ and $x=2$, there is a solution between 1 and 2 .

Step 2 Use a table.

- You can use the TABLE function to locate intervals where the solution(s) lie. First, enter the starting value and the interval for the table.
KEYSTROKEs: 2nd [TBLSET] 0 ENTER 1 ENTER

Step 4 Use the ZERO feature.

- Graph the function in the standard viewing window; then select ZERO from the CALC menu.

KEYSTROKES: ZOOM 6 2nd [CALC] 2

Place the cursor on a point at which $y<0$ and press ENTER for the LEFT BOUND. Then place the cursor on a point at which $y>0$ and press ENTER for the RIGHT BOUND. You can use the same point for the GUESS. The solution is about 1.36. This is consistent with the estimate made by using the TABLE.

Example 2 Radical Inequality

Solve $2 \sqrt{x}>\sqrt{x+2}+1$.
Step1 Graph each side of the inequality and use the TRACE feature.

- In the $\mathrm{Y}=$ list, enter $y_{1}=2 \sqrt{x}$ and $y_{2}=\sqrt{x+2}+1$. Then press GRAPH.

$[-10,10]$ scl: 1 by $[-10,10]$ scl: 1
- Press TRACE. You can use Δ or ∇ to switch the cursor between the two curves.

The calculator screen above shows that, for points to the left of where the curves cross, $\mathrm{Y} 1<\mathrm{Y} 2$ or $2 \sqrt{x}<\sqrt{x+2}+1$. To solve the original inequality, you must find points for which $\mathrm{Y} 1>\mathrm{Y} 2$. These are the points to the right of where the curves cross.

Step 2 Use the intersect feature.

- You can use the intersect feature on the CALC menu to approximate the x-coordinate of the point at which the curves cross.
keystrokes: 2nd [CALC] 5
- Press ENTER for each of FIRST CURVE?, SECOND CURVE?, and GUESS?.

The calculator screen shows that the x-coordinate of the point at which the curves cross is about 2.40. Therefore, the solution of the inequality is about $x>2.40$. Use the symbol $>$ in the solution because the symbol in the original inequality is $>$.

Step 3 Use the TABLE feature to check your solution.

- Start the table at 2 and show x-values in increments of 0.1. Scroll through the table.
keystrokes: 2nd [TBLSET] 2 ENTER . 1 ENTER 2nd [TABLE]
Notice that when x is less than or equal to $2.4, \mathrm{Y} 1<\mathrm{Y} 2$.
This verifies the solution $\{x \mid x>2.40\}$.

Exercises

Use a graphical method to solve each equation or inequality.

1. $\sqrt{x+4}=3$
2. $\sqrt{3 x-5}=1$
3. $\sqrt{x+5}=\sqrt{3 x+4}$
4. $\sqrt{x+3}+\sqrt{x-2}=4$
5. $\sqrt{3 x-7}=\sqrt{2 x-2}-1$
6. $\sqrt{x+8}-1=\sqrt{x+2}$
7. $\sqrt{x-3} \geq 2$
8. $\sqrt{x+3}>2 \sqrt{x}$
9. $\sqrt{x}+\sqrt{x-1}<4$
10. WRITING IN MATH Explain how you could apply the technique in the first example to solving an inequality.

Study Guide and Review

Study Guide

Key Concepts

Operations on Functions (Lessons 5-1 and 5-2)

Operation	Definition
Sum	$(f+g)(x)=f(x)+g(x)$
Difference	$(f-g)(x)=f(x)-g(x)$
Product	$(f \cdot g)(x)=f(x) \cdot g(x)$
Quotient	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$
Composition	$[f \circ g](x)=f[g(x)]$

Inverse Functions and Relations (Lesson 5-3)

- Two functions are inverses if and only if both their compositions are the identity function.
- The inverse relation is the set of ordered pairs obtained by exchanging the coordinates of each ordered par.
- The inverse of a function can be found by exchanging the independent and dependent variables (x and y, respectively) and then solving for the dependent variable (y).

Square Root and Cube Root Functions (Lessons 5-4 and 5-5)

- The domain of a square root function is limited to values for which the function is defined.
- The same techniques used to transform the graph of other functions can be applied to the graphs of square root and cube root functions.

Solving Radical Equations (Lesson 5-6)

- To solve a radical equation: Step 1 Isolate the radical on one side of the equation. Step 2 Raise each side of the equation to a power equal to the index. Step 3 Solve the resulting polynomial equation.

FOLDABLES

Use your Foldable to review the chapter. Working with a partner can be helpful. Ask for clarification of concepts as needed.

Key Vocabulary

composition of functions (p. 322)
cube root function (p.345)
extraneous solution (p. 352)
inverse function (p.329)
inverse relation (p. 329)
inflection point (p.345) radical equation (p. 352)
radical function (p. 338)
radical inequality (p.354)
square root function
(p. 338)

Vocabulary Check

Choose a word or term that best completes each statement.

1. If both compositions result in the \qquad then the functions are inverse functions.
2. In $a(n)$ \qquad the results of one function are used to evaluate a second function.
3. Equations with radicals that have variables in the radicands are called \qquad
4. Two relations are \qquad if and only if one relation contains the element (b, a) when the other relation contains the element (a, b).
5. When solving a radical equation, sometimes you will obtain a number that does not satisfy the original equation. Such a number is called a(n) \qquad
6. The square root function is a type of \qquad

Concept Check

7. Explain how to algebraically determine the inverse of a function.
8. Explain how to determine the domain of a square root function.

Study Guide and Review conitived

Lesson-by-Lesson Review

5-1 Operations with Functions

Given $f(x)=2 x+9$ and $g(x)=x^{2}+2 x+1$, find each function.
9. $(f+g)(x)$
10. $(f-g)(x)$
11. $(f \cdot g)(x)$
12. $\left(\frac{f}{g}\right)(x)$

Given $f(x)=10 x$ and $g(x)=x^{3}-8$, find each function.
13. $(f+g)(x)$
14. $(f-g)(x)$
15. $(f \cdot g)(x)$
16. $\left(\frac{f}{g}\right)(x)$

Example 2

Given $f(x)=3 x+1$ and $g(x)=x^{3}+1$, find each function.
a. $(f-g)(x)$

$$
\begin{array}{rlrl}
(x-g)(x) & =f(x)-g(x) & & \text { Subtraction of functions } \\
& =(3 x+1)-\left(x^{3}+1\right) & \text { Substitution } \\
& =3 x-x^{3} & & \text { Simplify. }
\end{array}
$$

b. $\left(\frac{f}{g}\right)(x)$

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { Division of functions } \\
& =\frac{(3 x+1)}{\left(x^{3}+1\right)} & & \text { Substitution }
\end{aligned}
$$

5-2 Composition of Functions

Find $[f \circ g](x)$ and $[g \circ f](x)$.
17. $f(x)=2 x+1$ $g(x)=4 x-5$
18. $f(x)=x^{2}+1$ $g(x)=x-7$
19. $f(x)=x^{2}+4$ $g(x)=-2 x+1$
20. $f(x)=4 x$ $g(x)=5 x-1$
21. $f(x)=x^{3}$
$g(x)=x-1$
22. $f(x)=x^{2}+2 x-3$
$g(x)=x+1$
23. MEASUREMENT The formula $f=3 y$ converts yards y to feet f and $f=\frac{n}{12}$ converts inches n to feet f. Write a composition of functions that converts yards to inches.

Example 2

If $f(x)=x^{2}+3$ and $g(x)=3 x-2$, find $g[f(x)$] and $f[g(x)]$.

$$
\begin{aligned}
g[f(x)] & =3\left(x^{2}+3\right)-2 & & \text { Replace } f(x) \text { with } x^{2}+3 . \\
& =3 x^{2}+9-2 & & \text { Distributive Property } \\
& =3 x^{2}+7 & & \text { Simplify. }
\end{aligned}
$$

$$
\begin{aligned}
f[g(x)] & =(3 x-2)^{2}+3 & & \text { Replace } g(x) \text { with } 3 x-2 . \\
& =9 x^{2}-12 x+4+3 & & \text { Multiply. } \\
& =9 x^{2}-12 x+7 & & \text { Simplify. }
\end{aligned}
$$

5-3 Inverse Functions and Relations

Find the inverse of each function. Then graph the function and its inverse.
24. $f(x)=5 x-6$
25. $f(x)=-3 x-5$
26. $f(x)=\frac{1}{2} x+3$
27. $f(x)=\frac{4 x+1}{5}$
28. $f(x)=x^{2}$
29. $f(x)=(2 x+1)^{2}$
30. SHOPPING Samuel bought a computer. The sales tax rate was 6% of the sale price, and he paid $\$ 50$ for shipping. Find the sale price if Samuel paid a total of $\$ 1322$.

Example 3

Find the inverse of $f(x)=-2 x+7$.
Rewrite $f(x)$ as $y=-2 x+7$. Then interchange the variables and solve for y.

$$
\begin{aligned}
x & =-2 y+7 & & \text { Interchange the variables. } \\
2 y & =-x+7 & & \text { Solve for } y . \\
y & =\frac{-x+7}{2} & & \text { Divide each side by } 2 . \\
f^{-1}(x) & =\frac{-x+7}{2} & & \text { Rewrite using function notation. }
\end{aligned}
$$

5-4 Graphing Square Root Functions

Graph each function. State the domain and range.
31. $f(x)=\sqrt{3 x}$
32. $f(x)=-\sqrt{6 x}$
33. $f(x)=\sqrt{x-7}$
34. $f(x)=\sqrt{x+5}-3$
35. $f(x)=\frac{3}{4} \sqrt{x-1}+5$
36. $f(x)=-\frac{1}{3} \sqrt{x+4}-1$
37. GEOMETRY The area of a circle is given by the formula $A=\pi r^{2}$. What is the radius of a circle with an area of 300 square inches?

Example 4

Graph $f(x)=\sqrt{x+1}-2$. State the domain and range.
Identify the domain.
$\begin{aligned} & x+1 \geq 0 \text { Write the radicand as greater than } \\ & x \geq-1 \text { or equal to } 0 . \\ & \text { Subtract } 1 \text { from each side. }\end{aligned}$
Make a table of values for $x \geq-1$ and graph the function.

x	$f(x)$
-1	-2
0	-1
1	-0.59
2	-0.27
3	0
4	0.24
5	0.45

The domain is $\{x \mid x \geq-1\}$, and the range is $\{f(x) \mid f(x) \geq-2\}$.

5-5 Graphing Cube Root Equations

Graph each function.

38. $f(x)=\sqrt[3]{2 x}$
39. $f(x)=\sqrt[3]{-4 x}$
40. $f(x)=\sqrt[3]{1-x}$
41. $f(x)=2-\sqrt[3]{x}$
42. $f(x)=\sqrt[3]{x+4}+1$
43. $f(x)=2 \sqrt[3]{x-1}+2$
44. GEOMETRY The volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$. What is the radius of a sphere with a volume of 400 cubic inches?

Example 5

Graph the function $f(x)=\sqrt[3]{x-2}+1$.
Make a table of values and graph the function.

x	$f(x)$
-5	-0.91
-4	-0.82
-3	-0.71
-2	-0.59
-1	-0.44
0	-0.26
1	0
2	1
3	2
4	2.26
5	2.44

Study Guide and Review continued

5-6 Solving Radical Equations

Solve each equation.

45. $\sqrt{x-3}+5=15$
46. $-\sqrt{x-11}=3-\sqrt{x}$
47. $4+\sqrt{3 x-1}=8$
48. $\sqrt{m+3}=\sqrt{2 m+1}$
49. $\sqrt{2 x+3}=3$
50. $(x+1)^{\frac{1}{4}}=-3$
51. $a^{\frac{1}{3}}-4=0$
52. $3(3 x-1)^{\frac{1}{3}}-6=0$
53. PHYSICS The formula $t=2 \pi \sqrt{\frac{\ell}{32}}$ represents the swing of a pendulum, where t is the time in seconds for the pendulum to swing back and forth and ℓ is the length of the pendulum in feet. Find the length of a pendulum that makes one swing in 2.75 seconds.

Solve each inequality.

54. $2+\sqrt{3 x-1}<5$
55. $\sqrt{3 x+13}-5 \geq 5$
56. $6-\sqrt{3 x+5} \leq 3$
57. $\sqrt{-3 x+4}-5 \geq 3$
58. $5+\sqrt{2 y-7}<5$
59. $3+\sqrt{2 x-3} \geq 3$
60. $\sqrt{3 x+1}-\sqrt{6+x}>0$

Example 6

Solve $\sqrt{2 x+9}-2=5$.

$$
\begin{aligned}
\sqrt{2 x+9}-2 & =5 & & \text { Original equation } \\
\sqrt{2 x+9} & =7 & & \text { Add } 2 \text { to each side. } \\
(\sqrt{2 x+9})^{2} & =7^{2} & & \text { Square each side. } \\
2 x+9 & =49 & & \text { Evaluate the squares. } \\
2 x & =40 & & \text { Subtract } 9 \text { from each side. } \\
x & =20 & & \text { Divide each side by } 2 .
\end{aligned}
$$

Example 7

Solve $\sqrt{2 x-5}+2>5$.

$$
\begin{aligned}
\sqrt{2 x-5} & \geq 0 & & \text { Radicand must be } \geq 0 \\
2 x-5 & \geq 0 & & \text { Square each side. } \\
2 x & \geq 5 & & \text { Add } 5 \text { to each side. } \\
x & \geq 2.5 & & \text { Divide each side by } 2 .
\end{aligned}
$$

The solution must be greater than or equal to 2.5 to satisfy the domain restriction.

$\sqrt{2 x-5}+2$	>5		Original inequality
$\sqrt{2 x-5}$	>3		Subtract 2 from each side.
$(\sqrt{2 x-5})^{2}$	$>3^{2}$		Square each side.
$2 x-5$	>9		Evaluate the squares.
$2 x$	>14		Add 5 to each side.
x	>7		Divide each side by 2.

Because $x \geq 2.5$ contains $x>7$, the solution of the inequality is $x>7$.

Determine whether each pair of functions are inverse functions. Write yes or no. Explain your reasoning.

1. $f(x)=3 x+8, g(x)=\frac{x-8}{3}$
2. $f(x)=\frac{1}{3} x+5, g(x)=3 x-15$
3. $f(x)=x+7, g(x)=x-7$
4. $g(x)=3 x-2, f(x)=\frac{x-2}{3}$
5. MULTIPLE CHOICE Which equation represents the graph below?

A $y=\sqrt{x-4}$
C $y=\sqrt[3]{x-4}$
B $y=\sqrt{x+4}$
D $y=\sqrt[3]{x+4}$

If $f(x)=3 x+2$ and $g(x)=x^{2}-2 x+1$, find each function.
6. $(f+g)(x)$
7. $(f \cdot g)(x)$
8. $(f-g)(x)$
9. $\left(\frac{f}{g}\right)(x)$

Solve each equation.
10. $\sqrt{a+12}=\sqrt{5 a-4}$
11. $\sqrt{3 x}=\sqrt{x-2}$
12. $4(\sqrt[4]{3 x+1})-8=0$
13. $\sqrt[3]{5 m+6}+15=21$
14. $\sqrt{3 x+21}=\sqrt{5 x+27}$
15. $1+\sqrt{x+11}=\sqrt{2 x+15}$
16. $\sqrt{x-5}=\sqrt{2 x-4}$
17. $\sqrt{x-6}-\sqrt{x}=3$

If $f(x)=3 x+2$ and $g(x)=x^{2}-2 x+1$, find each function.
18. $[f \circ g](x)$
19. $[g \circ f](x)$

Graph each function. State the domain and range of each function.
20. $y=2+\sqrt{x}$
21. $y=\sqrt{x+4}-1$
22. MULTIPLE CHOICE What is the domain of $f(x)=\sqrt{2 x+5}$?
A $\left\{x \left\lvert\, x>\frac{5}{2}\right.\right\}$
C $\left\{x \left\lvert\, x \geq \frac{5}{2}\right.\right\}$
B $\left\{x \left\lvert\, x>-\frac{5}{2}\right.\right\}$
D $\left\{x \left\lvert\, x \geq-\frac{5}{2}\right.\right\}$

Graph each function. State the domain and range of each function.
23. $f(x)=4-\sqrt[3]{2 x}$
24. $f(x)=2 \sqrt[3]{x+2}-4$
25. MULTIPLE CHOICE The radius of the cylinder below is equal to the height of the cylinder. The radius r can be found using the formula $r=\sqrt[3]{\frac{V}{\pi}}$. Find the radius of the cylinder if the volume is 500 cubic inches.

A 2.53 inches
B 5.42 inches
C 7.94 inches
D 24.92 inches
Solve each inequality.
26. $\sqrt{4 x-3}<5$
28. $2+\sqrt{4 x-4} \leq 6$
27. $-2+\sqrt{3 m-1}<4$
30. $\sqrt{b+12}-\sqrt{b}>2$
29. $\sqrt{2 x+3}-4 \leq 5$
32. $\sqrt{a-5}-\sqrt{a+7} \leq 4$
33. $\sqrt{c+5}+\sqrt{c+10}>2$

Find the inverse of each function, if it exists.
34. $f(x)=-2 x+8$
35. $f(x)=\frac{x+1}{3}$

Use the horizontal line test to determine whether the inverse of each function is also a function.
36. $f(x)=-4 x^{2}$
37. $f(x)=x^{3}-1$

Preparing for Assessment

Performance Task

Provide a clear solution to each part of the task. Be sure to show all of your work, include all relevant drawings, and justify your answers.

APPLY MATH Two students at a university are each research assistants. Johanna is a physics research assistant and Ravi is a biology research assistant. They are both performing various calculations on data collected in their labs.

Part A After studying production of two different varieties of tomatoes grown in two identical gardens, Ravi comes up with the following equations to represent the tomatoes' production rates:

$$
\text { Variety A: } t=2 d^{2}+4 d-2 \quad \text { Variety B: } t=d^{2}+d+1
$$

In Ravi's models, t represents the total number of tomatoes produced in each garden and d represents the number of whole days since the plants first started producing tomatoes.

- Write an expression that models the total production rates of both varieties.
- Determine which variety is more productive. Explain your reasoning.
- Write an expression that models how much more productive one variety is than the other.

Part B While studying the decline of a certain kind of cell in children with certain illnesses, Ravi calculates the following functions to represent how the decrease in the numbers of cells c as a function of the number of days d the child has the illness:

$$
\text { IIIness } A: c_{1}(d)=1218 e^{-0.05 d} \quad \text { Illness B: } c_{2}(d)=420 e^{-0.125 d}
$$

Ravi also finds that if a child has both illnesses, because of the increased trauma to the immune system, the total decrease in cells is the product of the two functions, rather than the sum.

- Write a function that models the decrease in the number of cells if a child had both illnesses.

Part C Ravi is working with data collected by researchers all over the world concerning bacteria growth in different bodies of water with different temperatures. The data collected is in Kelvin, Celsius, and Fahrenheit. The formula to convert Kelvin to Celsius is $T_{(C)}=T_{(K)}-273.15$, and the formula to convert Celsius to Fahrenheit is $T_{(F)}=\frac{9}{5} T_{(C)}+32$.

- Write a composition function that can be used to directly convert Kelvin to Fahrenheit.

Part D Johanna is working on a project involving asteroids stuck in the orbit of a planet. The formula for escape velocity is $v \geq \sqrt{\frac{2 G M}{r}}$, where v is the necessary velocity needed to escape orbit, G is the gravitational constant, M is the mass of the planet, and r is the radius of the planet. The gravitational constant is 6.673×10^{-11}.

- If the mass of the Earth is 5.98×10^{24}, in kilograms, and the escape velocity needed for an asteroid to leave Earth's orbit is 11,184 meters per second, determine the radius of the Earth. (Note: do not worry about units.)

Part E

Johanna next turns her focus to a project involving springs. The period of oscillation of a spring can be found using the formula $T=2 \pi \sqrt{\frac{m}{k}}$, where T is the period, m is the mass of
the oscillating body, and k is a constant. the oscillating body, and k is a constant.

- Write an equation for the mass of the oscillating body, in terms of the period.

Test-Taking Strategy

Example

Read the problem. Identify what you need to know. Then use the information in the problem to solve.

Given the equation $\sqrt{\frac{2 x}{3 y}}=8$, which of the following represents y in terms of x ?
A $y=\frac{x}{32}$
C $y=\frac{x}{96}$
B $y=\frac{\sqrt{8 x}}{3}$
D $y=\frac{\sqrt{2 x}}{3}$

Step 1 What information is given? Are any of the following involved: earlier quantities, answer choices that are easy to test, or inverse operations?
An equation is given. Because I need to solve for a variable, I will use inverse operations.

Step 2 How will working backward help solve this problem?

Test-Taking Tip

Strategies for Working Backward
In certain math problems, you are given information about an end result, but you are asked to find out something that happened earlier. In other problems, it can be faster to work from the answer choices, instead of from the problem. Finally, you'll sometimes need to use inverse operations, which is a specific way of working backward. You can work backward to solve all of these kinds of problems.

I'll use inverse operations to "undo" operations and isolate the variable y.
Step 3 How can you check your answer? What is the correct answer?
I can "work forward" by beginning with my answer and seeing if I arrive at the same result given in the problem. Choice C is correct.

Apply the Strategy

Read the problem. Identify what you need to know. Then use the information in the problem to solve.
An object is shot straight upward into the air with an initial speed of 800 feet per second. The height h that the object will be after t seconds is given by the equation $h=-16 t^{2}+800 t$. When will the object reach a height of 10,000 feet?
A 10 seconds
C 100 seconds
B 25 seconds
D 625 seconds

Answer the questions below.

a. What information is given? Are any of the following involved: earlier quantities, answer choices that are easy to test, or inverse operations?
b. How will working backward help solve this problem?
c. How can you check your answer?
d. What is the correct answer?

Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. What is the inverse of function $f(x)$ graphed below?
A $f^{-1}(x)=\frac{2}{x-2}$B $f^{-1}(x)=\frac{x-2}{2}$C $f^{-1}(x)=\frac{x}{2}-2$D $f^{-1}(x)=-2 x-2$
2. For what value of x is $\sqrt{x-3}-9=6$?
3. For what value of x is $9+\sqrt{5 x+5}=24$A $\quad-24$C 30
○ $\quad 18$
○
44
4. The formula $d=\sqrt[3]{6 t^{2}}$ represents d, the distance in millions of miles a planet is from the Sun, in terms of t, the number of Earth days it takes for the planet to orbit the Sun. It takes Venus 224.7 Earth days to complete one orbit. To the nearest tenth, how many millions of miles is Venus from the Sun?

A 37.0
B 67.2C 550.4
D 100,980.2
\square E $\quad 302,940.5$
5. Given the functions $f(x)=x^{2}-9$ and $g(x)=x+1$, find each of the following functions:

6. What is $(f \bullet g)(2)$ and $\left(\frac{f}{g}\right)(-2)$ for the functions $f(x)=x^{2}-36$ and $g(x)=x+4$?
〇 $\mathrm{A}-24 ;-14$
B $-128 ;-24$
○ $\quad-192 ;-16$
○ \mathbf{D} 212; 32
7. Determine whether each pair of functions are inverse functions.

$$
\begin{array}{ll}
f(x)=x+1 & g(x)=-x-1 \\
f(x)=(x+4)^{2} & g(x)=\sqrt{x}-4 \\
f(x)=-\frac{1}{2} x-8 & g(x)=-2 x-16 \\
f(x)=-\frac{1}{16} x^{2}-1 & g(x)=4 \sqrt{x}+1
\end{array}
$$

8. Which of the following functions is graphed below?

© $f(x)=\sqrt[3]{x-5}-5$B $f(x)=\sqrt[3]{x-5}+5$
C $f(x)=\sqrt[3]{x+5}-5$
D $f(x)=\sqrt[3]{x+5}+5$

Test-Taking Tip

Question 7 Remember, two functions are inverse functions if both of their compositions are the identity function.
9. Solve the equation.
$\sqrt[3]{2 x+5}+8=11$

10. What is the value of x for the equation $4+$ $\sqrt[3]{9 x+81}=10$?A -37B 2C 15D 244
11. Andrew works at a suit store where he earns $\$ 360$ per forty-hour work week, plus a 10% commission on sales over $\$ 500$ each week, which can be represented by the functions $f(x)=0.1 x$ and $g(x)=$ $x-500$, where x is the amount Andrew makes in sales in a week. Assuming Andrew made enough to earn a commission, which composition would give his commission: $(f \circ g)(x)$ or $(g \circ f)(x)$? Explain your reasoning.
12. Which of the following belong to the solution set of $10-\sqrt{4 x+20}>2$?

A -3B 6C 11D 16E 21
13. If $a=10$ and $b=13$, what is the value of $(6 \sqrt{a}+2 \sqrt{b})(6 \sqrt{a}-2 \sqrt{b})$?
14. What is $(f \circ g)(-2)$ and $(g \circ f)(-2)$ for the functions $f(x)=x^{2}-100$ and $g(x)=x+10$?
○ $\mathrm{A}-134 ;-28$
○ $\quad-36 ;-86$
○ $\mathbf{C} \quad 192 ; 28$
○ $\mathbf{D} 242 ; 64$
15. Let $f(x)=x^{2}-1$. What is the value of $f[f(2)]$?

16. Which of the following functions is graphed below?
A $y=\sqrt{x-2}-3$B $y=\sqrt{x+2}-3$C $y=\sqrt{x-3}-2$
\bigcirc D $y=\sqrt{x+3}-2$

Need Extra Help?																
If you missed Question...	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Go to Lesson...	$5-3$	$5-6$	$5-6$	$5-5$	$5-1$	$5-1$	$5-3$	$5-5$	$5-6$	$5-6$	$5-2$	$5-6$	$5-4$	$5-4$	$5-1$	$5-4$

CONTENTS

CHAPTER 0 Preparing for Advanced Algebra
CHAPTER 1 Linear Equations

CHAPTER 2 Relations and Functions

CHAPTER 3 Quadratic Functions
CHAPTER 4 Polynomials and Polynomial Functions
CHAPTER 5 Inverses and Radical Functions
CHAPTER 6 Exponential and Logarithmic Functions
CHAPTER 7 Rational Functions
CHAPTER 8 Statistics and Probability
CHAPTER 9 Trigonometric Functions
CHAPTER 10 Trigonometric Identities and Equations

Go Onlinel connectED.mcgraw-hill.com

Glencoe High School Math Series is about connecting math content, rigor, and adaptive instruction for student success.

[^0]: *Ask your teacher if you have access to ALEKS.

[^1]: * Ask your teacher if this is part of your program.

